α-Pinene: A never-ending story

Phytochemistry“α-Pinene represents a member of the monoterpene class and is highly distributed in higher plants like conifers, Juniper ssp. and Cannabis ssp.

α-Pinene has been used to treat respiratory tract infections for centuries. Furthermore, it plays a crucial role in the fragrance and flavor industry. In vitro assays have shown an enantioselective profile of (+)- and (-)-α-pinene for antibacterial and insecticidal activity, respectively.”

https://pubmed.ncbi.nlm.nih.gov/34365295/

https://www.sciencedirect.com/science/article/pii/S0031942221002065?via%3Dihub

Image 1

“α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.” https://pubmed.ncbi.nlm.nih.gov/33440866/

“α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. These results suggest that α-pinene has a significant effect on the inhibition of tumor invasion and may potentially be developed into an anti-metastatic drug.”   https://applbiolchem.springeropen.com/articles/10.1007/s13765-016-0175-6

KY Hemp-induced Modulation of Ovarian Cancer Cell Metastasis

“Our laboratory is interested in searching for a new plant-based therapeutics to treat ovarian cancer.

We are interested in studying anti-cancer effects of KY grown hemp as a potential candidate drug.

Marijuana and hemp belong to the same genus and species. However, they are different in cannabidiol (CBD) and tetrahydrocannabinol (THC) content.

Both CBD and THC are therapeutically beneficial. Hemp is harmless and non-addictive.

Major objective of this study is to investigate whether KY hemp extract can modulate the metastasis of ovarian cancer.

Based on the data here we conclude that KY hemp has significant anti-metastatic properties against ovarian cancer.”

https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.2018.32.1_supplement.667.7

Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line.

Iranian Journal of Basic Medical Sciences

“Metastasis is the main cause of death in patients with melanoma.

Cannabis-based medicines are effective adjunctive drugs in cancer patients.

Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line.

RESULTS:

Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls.

CONCLUSION:

C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.”

https://www.ncbi.nlm.nih.gov/pubmed/29147495

WIN 55,212-2 Inhibits the Epithelial Mesenchymal Transition of Gastric Cancer Cells via COX-2 Signals.

Image result for Cell Physiol Biochem

“Cannabinoids (the active components of Cannabis sativa) and their derivatives have received considerable interest due to reports that they can affect the tumor growth, migration, and metastasis.

Previous studies showed that the cannabinoid agonist WIN 55,212-2 (WIN) was associated with gastric cancer (GC) metastasis, but the mechanisms were unknown.

RESULTS:

WIN inhibited cell migration, invasion, and epithelial to mesenchymal transition (EMT) in GC. WIN treatment resulted in the downregulation of cyclooxygenase-2 (COX-2) expression and decreased the phosphorylation of AKT, and inhibited EMT in SGC7901 cells. Decreased expression of COX-2 and vimentin, and increased expression of E-cadherin, which was induced by WIN, were normalized by overexpression of AKT, suggesting that AKT mediated, at least partially, the WIN suppressed EMT of GC cells.

CONCLUSION:

WIN can inhibit the EMT of GC cells through the downregulation of COX-2.”

https://www.ncbi.nlm.nih.gov/pubmed/27802436

Δ-9 Tetrahydrocannabinol inhibits growth and metastasis of lung cancer.

Image result for harvard university logo

“Lung cancer is the major cause of cancer-related mortality worldwide.

Many of these over-express epidermal growth factor receptor (EGFR), and are usually highly aggressive and resistant to chemotherapy.

Recent studies have shown that Δ-9 Tetrahydrocannabinol (THC), the major component of Cannabis sativa, possess anti-tumor properties against various types of cancers.

However, not much is known about its effect on lung cancer. In this study, we sought to characterize the effect of THC on EGF-induced growth and metastasis of human non small lung cancer cell (NSCLC) lines A549 and SW-1573.

We demonstrate that these cell lines and primary tumor samples derived from lung cancer patients express cannabinoids receptors CB1 and CB2, the known targets for THC action.

We further show that THC inhibits EGF-induced growth in these cell lines.

In addition THC attenuated EGF-stimulated chemotaxis and chemoinvasion.

Next we characterized the effect of THC on in vivo lung cancer growth and metastasis in a murine model. A549 cells were implanted in SCID mice (n=6 per group) through subcutaneous and intravenous injections to generate subcutaneous and lung metastatic cancer, respectively. THC (5mg/kg body wt.) was administered once daily through intraperitoneal injections for 21 days. The mice were analyzed for tumor growth and lung metastasis.

A significant reduction (~50%) in tumor weight and volume were observed in THC treated animals compared to the vehicle treated animals.

THC treated animals also showed a significant (~60%) reduction in macroscopic lesions on the lung surface in comparison to vehicle treated control.

Immunohistochemical analysis of the tumor samples from THC treated animals revealed anti-proliferative and anti-angiogenic effects of THC with significant reduction in staining for Ki67, a proliferative marker and CD31, an endothelial marker indicative of vascularization. Investigation into the signaling events associated with reduced EGF-induced functional effects revealed that THC also inhibits EGF-induced Akt phosphorylation. Akt is a central signaling molecule of EGFR-mediated signaling pathways and it regulates a diverse array of cellular functions, including proliferation, angiogenesis, invasion and apoptosis.

Cumulatively, these studies indicate that THC has anti-tumorigenic and anti-metastatic effects against lung cancer. Novel therapies against EGFR overexpressing, aggressive and chemotherapy resistant lung cancers may include targeting the cannabinoids receptors.”

http://cancerres.aacrjournals.org/content/67/9_Supplement/4749.short

http://www.thctotalhealthcare.com/category/lung-cancer/

The antitumor action of cannabinoids on glioma tumorigenesis.

“Cannabinoids are a class of chemical compounds with a wide spectrum of pharmacological effects, mediated by two specific plasma membrane receptors (CB1 and CB2).

Recently, CB1 and CB2 expression levels have been detected in human tumors, including those of brain.

Cannabinoids-endocannabinoids exert anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic effects in different cancer types, both in vitro and in vivo in animal models, after local or systemic administration.

We present the available experimental and clinical data, to date, regarding the antitumor action of cannabinoids on the tumorigenesis of gliomas.”

http://www.ncbi.nlm.nih.gov/pubmed/25472761

http://www.thctotalhealthcare.com/category/gllomas/

Down-regulation of cyclooxygenase-2 (COX-2) by cannabidiolic acid in human breast cancer cells.

“Metastases are known to be responsible for approximately 90% of breast cancer-related deaths.

Cyclooxygenase-2 (COX-2) is involved not only in inflammatory processes, but also in the metastasis of cancer cells…

…cannabidiolic acid (CBDA), a selective COX-2 inhibitor found in the fiber-type cannabis plant…

Taken together, the results obtained here demonstrated that i) CBDA had dual inhibitory effects on COX-2 through down-regulation and enzyme inhibition, and ii) CBDA may possess the ability to suppress genes that are positively involved in the metastasis of cancer cells in vitro.”

http://www.ncbi.nlm.nih.gov/pubmed/25242400

“Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis…Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.”  http://dmd.aspetjournals.org/content/36/9/1917.long

“Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration… The data presented in this report suggest for the first time that as an active component in the cannabis plant, CBDA offers potential therapeutic modality in the abrogation of cancer cell migration, including aggressive breast cancers.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009504/

http://www.thctotalhealthcare.com/category/breast-cancer/

Delta–9 Tetrahydrocannabinol inhibits growth and metastasis of lung cancer – Harvard University

“Lung cancer is the major cause of cancer-related mortality worldwide.Many of these over-express epidermal growth factor receptor(EGFR), and are usually highly aggressive and resistant to chemotherapy.

Recent studies have shown that {Delta}-9 Tetrahydrocannabinol (THC),the major component of Cannabis sativa, possess anti-tumor propertiesagainst various types of cancers.

 However, not much is knownabout its effect on lung cancer. In this study, we sought tocharacterize the effect of THC on EGF-induced growth and metastasisof human non small lung cancer cell (NSCLC) lines A549 and SW-1573.

We demonstrate that these cell lines and primary tumor samplesderived from lung cancer patients express cannabinoids receptorsCB1 and CB2, the known targets for THC action. We further showthat THC inhibits EGF-induced growth in these cell lines. Inaddition THC attenuated EGF-stimulated chemotaxis and chemoinvasion.Next we characterized the effect of THC on in vivo lung cancergrowth and metastasis in a murine model. A549 cells were implantedin SCID mice (n=6 per group) through subcutaneous and intravenousinjections to generate subcutaneous and lung metastatic cancer,respectively. THC (5mg/kg body wt.) was administered once dailythrough intraperitoneal injections for 21 days. The mice wereanalyzed for tumor growth and lung metastasis.

 A significantreduction (~50%) in tumor weight and volume were observed inTHC treated animals compared to the vehicle treated animals.THC treated animals also showed a significant (~60%) reductionin macroscopic lesions on the lung surface in comparison tovehicle treated control. Immunohistochemical analysis of thetumor samples from THC treated animals revealed anti-proliferativeand anti-angiogenic effects of THC with significant reductionin staining for Ki67, a proliferative marker and CD31, an endothelialmarker indicative of vascularization. Investigation into thesignaling events associated with reduced EGF-induced functionaleffects revealed that THC also inhibits EGF-induced Akt phosphorylation.Akt is a central signaling molecule of EGFR-mediated signalingpathways and it regulates a diverse array of cellular functions,including proliferation, angiogenesis, invasion and apoptosis.

Cumulatively, these studies indicate that THC has anti-tumorigenic and anti-metastatic effects against lung cancer. Novel therapies against EGFR overexpressing, aggressive and chemotherapy resistant lung cancers may include targeting the cannabinoids receptors.”

http://www.aacrmeetingabstracts.org/cgi/content/meeting_abstract/2007/1_Annual_Meeting/4749%20?maxtoshow&hits=80&RESULTFORMAT&fulltext=cannabinoid&searchid=1&FIRSTINDEX=1760&resourcetype=HWCIT

Physician’s documentation confirms successful treatment of basal cell carcinoma with topical cannabis extract

“We are pleased to announce that we have physician’s documentation that confirms the successful treatment of basal cell carcinoma that resulted from the application of a topical cannabis extract.” 

Currently, there is a tremendous amount of controversy with respect to the effects that cannabinoids have on cancers. Endocannabinoids, phytocannabinoids, and synthetic cannabinoids have demonstrated cancer killing and anti-metastatic properties in tissue culture and in animal models.

While formal, proper, FDA approved clinical trials that would prove or disprove the therapeutic potential of cannabis extracts for treating cancers; trials have not been carried out. Nevertheless, a significant number of anecdotal observations have accumulated that suggest people suffering from a variety of cancers appear to have been cured by ingesting what is known as “Rick Simpson’s hemp oil”.”

More: http://www.news-medical.net/news/20110407/Physicians-documentation-confirms-successful-treatment-of-basal-cell-carcinoma-with-topical-cannabis-extract.aspx

Cannabis Science Publishes List of Over 800 Peer-Reviewed Cannabis and Cancer References From Scientists Around the World

“This list of peer-reviewed manuscripts, provides support for the anecdotal observations of an increasing number of patients claiming successful cancer treatment using medical cannabis extracts.”

“The scientific documentation of the anti-cancer and anti-metastatic properties of cannabinoids is a driving force behind behind our long-term goal, to make high quality, effective, reliable and safe cannabis extracts available to the public beyond the borders of current medical marijuana states.”

http://www.drugs.com/clinical_trials/cannabis-science-publishes-list-over-800-peer-reviewed-cannabis-cancer-references-scientists-around-12716.html

https://www.cannabisscience.com/index.php/news-media/news-archive/215-cannabis-science-publishes-list-of-over-800-peer-reviewed-cannabis-and-cancer-references-from-scientists-around-the-world