Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

Image result for BMC Complement Altern Med.

“Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year.

Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies.

In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines.

Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations.

They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels.

CONCLUSIONS:

In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.”

http://www.ncbi.nlm.nih.gov/pubmed/27586579

“Different ethnic groups around the world use Cannabis sativa for smoking, preparing concoctions to treat diseases, and for various cultural purposes. It has been found to be effective against a variety of disorders including neurodegerative disorders, autoimmune diseases, and cancer. Cannabis sativa in particular cannabidiol, we propose it plays important role in helping the body fight cancer through inhibition of pain and cell growth.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009497/

Inhibition of autophagy and enhancement of endoplasmic reticulum stress increase sensitivity of osteosarcoma Saos-2 cells to cannabinoid receptor agonist WIN55,212-2.

“WIN55,212-2, a cannabinoid receptor agonist, can activate cannabinoid receptors, which has proven anti-tumour effects in several tumour types. Studies showed that WIN can inhibit tumour cell proliferation and induce apoptosis in diverse cancers.

However, the role and mechanism of WIN in osteosarcoma are still unclear. In this study, we examined the effect of WIN55,212-2 on osteosarcoma cell line Saos-2 in terms of cell viability and apoptosis. Meanwhile, we further explored the role of endoplasmic reticulum stress and autophagy in apoptosis induced by WIN55,212-2.

Our results showed that the cell proliferation of Saos-2 was inhibited by WIN55,212-2 in a dose-dependent and time-dependent manner. WIN55,212-2-induced Saos-2 apoptosis through mitochondrial apoptosis pathway. Meanwhile, WIN55,212-2 can induce endoplasmic reticulum stress and autophagy in Saos-2 cells. Inhibition of autophagy and enhancement of endoplasmic reticulum stress increased apoptosis induced by WIN55,212-2 in Saos-2 cells.

These findings indicated that WIN55,212-2 in combination with autophagic inhibitor or endoplasmic reticulum stress activator may shed new light on osteosarcoma treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27309350

Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: Involvement of CB2

Logo of brjcancer

“We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB1 and CB2). In this study, we investigated the role of CB2 receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.

This study defines the involvement of CB2-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB2 agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer.

Cannabinoids, the active components of Cannabis sativa and their derivatives, exert a wide spectrum of modulatory actions and pharmacological activities in the brain as well as in the periphery, and therefore, the therapeutic potential of cannabinoids has gained much attention during the past few years. One of the most exciting areas of current research in the therapeutic potential of cannabinoids is cancer.

Recent evidence suggests that cannabinoids are powerful regulators of cell growth and differentiation. They have been shown to exert anti-tumoural effects by decreasing viability, proliferation, adhesion and migration on various cancer cells, thereby suggesting the potential use of cannabinoids in the treatment of gliomas, prostate and breast cancers and malignancies of immune origin.

Overall, our data show a role for the cannabinoid receptor CB2 in the anti-tumour effect of cannabinoids on prostate cells in vitroand in vivo. There is considerable interest in the application of selective CB2 receptor agonists, which are devoid of typical marijuana-like psychoactive properties of CB1 agonists, for future cannabinoid-based anticancer therapies. Therefore, our findings point to the potential application of cannabinoid receptor type 2 ligands as anti-tumour agents in prostate cancer.”

Cannabinoid pharmacology in cancer research: A new hope for cancer patients?

Image result for Eur J Pharmacol.

“Cannabinoids have been used for many centuries to ease pain and in the past decade, the endocannabinoid system has been implicated in a number of pathophysiological conditions, such as mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis, spinal cord injury, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity, and osteoporosis.

Several studies have demonstrated that cannabinoids also have anti-cancer activity and as cannabinoids are usually well tolerated and do not produce the typical toxic effects of conventional chemotherapies, there is considerable merit in the development of cannabinoids as potential anticancer therapies.

Whilst the presence of psychoactive effects of cannabinoids could prevent any progress in this field, recent studies have shown the value of the non-psychoactive components of cannabinoids in activating apoptotic pathways, inducing anti-proliferative and anti-angiogenic effects.

The aforementioned effects are suggested to be through pathways such as ERK, Akt, mitogen-activated protein kinase (MAPK) pathways, phosphoinositide 3-kinase (PI3K) pathways and hypoxia inducible factor 1 (HIF1), all of which are important contributors to the hallmarks of cancer.

Many important questions still remain unanswered or are poorly addressed thus necessitating further research at basic pre-clinical and clinical levels. In this review, we address these issues with a view to identifying the key challenges that future research needs to address.”

http://www.ncbi.nlm.nih.gov/pubmed/26852955

http://www.thctotalhealthcare.com/category/cancer/

Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in non-small cell lung cancer by downregulation of EGFR pathway.

“JWH-015, a cannabinoid receptor 2 (CB2) agonist has tumor regressive property in various cancer types.

These data confer the impact of this cannabinoid on anti-proliferative and anti-tumorigenic effects, thus enhancing our understanding of its therapeutic efficacy in NSCLC.

Our findings open new avenues for cannabinoid receptor CB2 agonist-JWH-015 as a novel and potential therapeutic target based on EGFR downregulation mechanisms in NSCLC.”

http://www.ncbi.nlm.nih.gov/pubmed/26741322

Involvement of PAR-4 in cannabinoid-dependent sensitization of osteosarcoma cells to TRAIL-induced apoptosis.

Logo of ijbiosci

“Osteosarcoma is the most common malignant bone tumor in childhood and adolescence.

Cannabinoids (CBs), the active constituents of Cannabis sativa, are known to exert a wide range of central and peripheral effects.

Recently, numerous studies evidenced the role of cannabinoids in the regulation of cell death and survival, focusing the anti-proliferative effects of these compounds in various tumours… cannabinoids can also activate autophagic process…

The aim of the present study was to investigate the effects induced by cannabinoids in osteosarcoma cells and the molecular pathway…

The synthetic cannabinoid WIN 55,212-2 is a potent cannabinoid receptor agonist with anticancer potential.

Moreover, we indicate that a key role in WIN action is played by the tumor suppressor protein PAR-4.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007360/

 

Δ-9 Tetrahydrocannabinol inhibits growth and metastasis of lung cancer.

Image result for harvard university logo

“Lung cancer is the major cause of cancer-related mortality worldwide.

Many of these over-express epidermal growth factor receptor (EGFR), and are usually highly aggressive and resistant to chemotherapy.

Recent studies have shown that Δ-9 Tetrahydrocannabinol (THC), the major component of Cannabis sativa, possess anti-tumor properties against various types of cancers.

However, not much is known about its effect on lung cancer. In this study, we sought to characterize the effect of THC on EGF-induced growth and metastasis of human non small lung cancer cell (NSCLC) lines A549 and SW-1573.

We demonstrate that these cell lines and primary tumor samples derived from lung cancer patients express cannabinoids receptors CB1 and CB2, the known targets for THC action.

We further show that THC inhibits EGF-induced growth in these cell lines.

In addition THC attenuated EGF-stimulated chemotaxis and chemoinvasion.

Next we characterized the effect of THC on in vivo lung cancer growth and metastasis in a murine model. A549 cells were implanted in SCID mice (n=6 per group) through subcutaneous and intravenous injections to generate subcutaneous and lung metastatic cancer, respectively. THC (5mg/kg body wt.) was administered once daily through intraperitoneal injections for 21 days. The mice were analyzed for tumor growth and lung metastasis.

A significant reduction (~50%) in tumor weight and volume were observed in THC treated animals compared to the vehicle treated animals.

THC treated animals also showed a significant (~60%) reduction in macroscopic lesions on the lung surface in comparison to vehicle treated control.

Immunohistochemical analysis of the tumor samples from THC treated animals revealed anti-proliferative and anti-angiogenic effects of THC with significant reduction in staining for Ki67, a proliferative marker and CD31, an endothelial marker indicative of vascularization. Investigation into the signaling events associated with reduced EGF-induced functional effects revealed that THC also inhibits EGF-induced Akt phosphorylation. Akt is a central signaling molecule of EGFR-mediated signaling pathways and it regulates a diverse array of cellular functions, including proliferation, angiogenesis, invasion and apoptosis.

Cumulatively, these studies indicate that THC has anti-tumorigenic and anti-metastatic effects against lung cancer. Novel therapies against EGFR overexpressing, aggressive and chemotherapy resistant lung cancers may include targeting the cannabinoids receptors.”

http://cancerres.aacrjournals.org/content/67/9_Supplement/4749.short

http://www.thctotalhealthcare.com/category/lung-cancer/

The antitumor action of cannabinoids on glioma tumorigenesis.

“Cannabinoids are a class of chemical compounds with a wide spectrum of pharmacological effects, mediated by two specific plasma membrane receptors (CB1 and CB2).

Recently, CB1 and CB2 expression levels have been detected in human tumors, including those of brain.

Cannabinoids-endocannabinoids exert anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic effects in different cancer types, both in vitro and in vivo in animal models, after local or systemic administration.

We present the available experimental and clinical data, to date, regarding the antitumor action of cannabinoids on the tumorigenesis of gliomas.”

http://www.ncbi.nlm.nih.gov/pubmed/25472761

http://www.thctotalhealthcare.com/category/gllomas/

Cannabinoids as therapeutic agents in cancer: current status and future implications

Img8

“Cannabinoids… active compounds of the Cannabis sativa plant… cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents.

They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models…”  http://www.ncbi.nlm.nih.gov/pubmed/25115386

“Cannabinoids… the active compounds of the Cannabis sativa plant… anti-cancer agents… anti-proliferative… anti-angiogenic… anti-migratory and anti-invasive… The administration of single cannabinoids might produce limited relief compared to the administration of crude extract of plant containing multiple cannabinoids, terpenes and flavanoids.” Full-text: http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B0%5D=2233&path%5B1%5D=3664

http://www.thctotalhealthcare.com/category/cancer/

Delta–9 Tetrahydrocannabinol inhibits growth and metastasis of lung cancer – Harvard University

“Lung cancer is the major cause of cancer-related mortality worldwide.Many of these over-express epidermal growth factor receptor(EGFR), and are usually highly aggressive and resistant to chemotherapy.

Recent studies have shown that {Delta}-9 Tetrahydrocannabinol (THC),the major component of Cannabis sativa, possess anti-tumor propertiesagainst various types of cancers.

 However, not much is knownabout its effect on lung cancer. In this study, we sought tocharacterize the effect of THC on EGF-induced growth and metastasisof human non small lung cancer cell (NSCLC) lines A549 and SW-1573.

We demonstrate that these cell lines and primary tumor samplesderived from lung cancer patients express cannabinoids receptorsCB1 and CB2, the known targets for THC action. We further showthat THC inhibits EGF-induced growth in these cell lines. Inaddition THC attenuated EGF-stimulated chemotaxis and chemoinvasion.Next we characterized the effect of THC on in vivo lung cancergrowth and metastasis in a murine model. A549 cells were implantedin SCID mice (n=6 per group) through subcutaneous and intravenousinjections to generate subcutaneous and lung metastatic cancer,respectively. THC (5mg/kg body wt.) was administered once dailythrough intraperitoneal injections for 21 days. The mice wereanalyzed for tumor growth and lung metastasis.

 A significantreduction (~50%) in tumor weight and volume were observed inTHC treated animals compared to the vehicle treated animals.THC treated animals also showed a significant (~60%) reductionin macroscopic lesions on the lung surface in comparison tovehicle treated control. Immunohistochemical analysis of thetumor samples from THC treated animals revealed anti-proliferativeand anti-angiogenic effects of THC with significant reductionin staining for Ki67, a proliferative marker and CD31, an endothelialmarker indicative of vascularization. Investigation into thesignaling events associated with reduced EGF-induced functionaleffects revealed that THC also inhibits EGF-induced Akt phosphorylation.Akt is a central signaling molecule of EGFR-mediated signalingpathways and it regulates a diverse array of cellular functions,including proliferation, angiogenesis, invasion and apoptosis.

Cumulatively, these studies indicate that THC has anti-tumorigenic and anti-metastatic effects against lung cancer. Novel therapies against EGFR overexpressing, aggressive and chemotherapy resistant lung cancers may include targeting the cannabinoids receptors.”

http://www.aacrmeetingabstracts.org/cgi/content/meeting_abstract/2007/1_Annual_Meeting/4749%20?maxtoshow&hits=80&RESULTFORMAT&fulltext=cannabinoid&searchid=1&FIRSTINDEX=1760&resourcetype=HWCIT