Abstract
“Phytocannabinoids from the plant Cannabis sativa induce a variety of physiological and pharmacological responses in living systems, including anti-inflammatory, antinociceptive, anti-ulcer and antitumor activities. The discovery of the cannabinoid receptors CB1 and CB2 led to the development of agonists and antagonists of these receptors for the treatment of a variety of diseases. Nabilone, a synthetic derivative of Delta9-tetrahydrocannabinol (Delta9-THC), which is the main natural psychotropic constituent of C sativa, was approved by the US FDA for the treatment of nausea and as an anti-emetic for patients undergoing chemotherapy. Delta9-THC and related cannabinoids are involved in a variety of signal transduction pathways; thus, reducing or removing the psychotropic effects of these compounds would enhance their therapeutic spectra. Compound synthesis and qualitative SAR studies are time-consuming activities; however, microbes are effectively the most inventive synthetic chemists because of their metabolic plasticity. This review discusses the potential of C sativa mycoflora, which is pathogenic as well as endophytic, to remove the psychotropic effects of Delta9-THC and related cannabinoids, and describes the development of a model system for the rapid and cost-effective commercial production of cannabinoids through fermentation pathways.”