Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil

biomolecules-logo“Industrial hemp is a multiuse crop that has been widely cultivated to produce fibers and nutrients. The capability of the essential oil (EO) from inflorescences as antimicrobial agent has been reported. However, literature data are still lacking about the hemp EO antiprotozoal efficacy in vivo.

The present study aims to unravel this concern through the evaluation of the efficacy of hemp EOs (2.5 mL/kg, intraperitoneally) of three different cultivars, namely Futura 75Carmagnola selezionata and Eletta campana, in mice intraperitoneally infected with Leishmania tropica. A detailed description of EO composition and targets-components analysis is reported.

Myrcene, α-pinene and E-caryophyllene were the main components of the EOs, as indicated by the gas-chromatographic analysis. However, a prominent position in the scenario of the theoretical interactions underlying the bio-pharmacological activity was also occupied by selina-3,7(11)-diene, which displayed affinities in the micromolar range (5.4-28.9) towards proliferator-activated receptor α, cannabinoid CB2 receptor and acetylcholinesterase. The content of this compound was higher in Futura 75 and Eletta campana, in accordance with their higher scavenging/reducing properties and efficacy against the tissue wound, induced by L. tropica.

Overall, the present study recommends hemp female inflorescences, as sources of biomolecules with potential pharmacological applications, especially towards infective diseases.”

https://pubmed.ncbi.nlm.nih.gov/33673274/

https://www.mdpi.com/2218-273X/11/2/272

Rapid Antibacterial Activity of Cannabichromenic Acid against Methicillin-Resistant Staphylococcus aureus

antibiotics-logo “Methicillin-resistant Staphylococcus aureus (MRSA) has proven to be an imminent threat to public health, intensifying the need for novel therapeutics.

Previous evidence suggests that cannabinoids harbour potent antibacterial activity.

In this study, a group of previously inaccessible phytocannabinoids and synthetic analogues were examined for potential antibacterial activity.

The minimum inhibitory concentrations and dynamics of bacterial inhibition, determined through resazurin reduction and time-kill assays, revealed the potent antibacterial activity of the phytocannabinoids against gram-positive antibiotic-resistant bacterial species, including MRSA.

One phytocannabinoid, cannabichromenic acid (CBCA), demonstrated faster and more potent bactericidal activity than vancomycin, the currently recommended antibiotic for the treatment of MRSA infections. Such bactericidal activity was sustained against low-and high-dose inoculums as well as exponential- and stationary-phase MRSA cells. Further, mammalian cell viability was maintained in the presence of CBCA. Finally, microscopic evaluation suggests that CBCA may function through the degradation of the bacterial lipid membrane and alteration of the bacterial nucleoid.

The results of the current study provide encouraging evidence that cannabinoids may serve as a previously unrecognised resource for the generation of novel antibiotics active against MRSA.”

https://pubmed.ncbi.nlm.nih.gov/32824356/

https://www.mdpi.com/2079-6382/9/8/523

Cannabinoids-Promising Antimicrobial Drugs or Intoxicants with Benefits?

antibiotics-logo“Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance.

Extracts of Cannabis sativa have been used for the treatment of several diseases since ancient times. However, its phytocannabinoid constituents are predominantly associated with psychotropic effects and medical applications far beyond the treatment of infections.

It has been demonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositive bacteria including methicillin-resistant Staphylococcus aureus (MRSA).

As first in vivo efficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promising antimicrobial drug candidates or overhyped intoxicants with benefits.”

https://pubmed.ncbi.nlm.nih.gov/32498408/

https://www.mdpi.com/2079-6382/9/6/297

Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp.

LWT“The growing concern on the antibiotic resistance spreading among bacteria has stimulated the search for valuable alternatives from plant sources.

This study dealt with the potential use of hemp (Cannabis sativa L.) seeds extract to inhibit the growth of selected pathogenic enterobacteria and the biofilm formation by Staphylococcus aureus, representing severe risks of food-borne illnesses. Effects on probiotic bacteria were also examined. A double-staining viability/mortality assay was used to examine potential S. aureus membrane damage.

Our results highlighted a selective antimicrobial activity of C. sativa extract against pathogenic strains and no inhibitory effects on the growth of probiotic strains belonging to the Bifidobacterium and Lactobacillus genera. This selective inhibition is of outmost importance for the maintenance of healthy gut microbiota.

The double-staining assay showed that the C. sativa extract was capable of inhibiting the biofilm producer S. aureus ATCC 35556 strain; this antibacterial action was only partially linked to membrane damage. Biofilm formation was inhibited as well; inhibition occurs at lower concentration with respect to planktonic cells (0.5 mg/ml vs 1 mg/ml, respectively).

Therefore, hemp seeds extracts represent a new exploitable and valuable antimicrobial and antibiofilm agent for the food and nutraceutical industry as a possible alternative to antibiotics/antibacterial compounds.

Cannabis sativa L. seeds showed antimicrobial and antibiofilm activity.

C. sativa L. seeds selectively inhibit the growth of potentially pathogenic strains.

C. sativa L. seeds did not exert antimicrobial activity against probiotic bacteria.

C. sativa L. seeds inhibit the biofilm formation by Staphylococcus aureus.”

https://www.sciencedirect.com/science/article/pii/S0023643820301377

Image 1

“Antimicrobial Activity of Cannabis sativa L.”  https://www.scirp.org/journal/PaperInformation.aspx?PaperID=18123

“Antimicrobial studies of the leaf of cannabis sativa L.”  https://www.ncbi.nlm.nih.gov/pubmed/16414764

Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria.

Scientific Reports “The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.”

https://www.ncbi.nlm.nih.gov/pubmed/32139776

https://www.nature.com/articles/s41598-020-60952-0

Comparison of Efficacy of Cannabinoids versus Commercial Oral Care Products in Reducing Bacterial Content from Dental Plaque: A Preliminary Observation.

Image result for cureus journal“Dental plaque is a complex biofilm that gets formed on the teeth and acts as a reservoir of different microbes. It is the root cause for the occurrence of several dental problems and diseases, including cavities, bad breath, bleeding gums, tooth decay, and tooth loss. Therefore, it should be regularly removed using suitable oral care aids.

The present study compared the efficacy of oral care products and cannabinoids in reducing the bacterial content of dental plaques.

Sixty adults aged 18 to 45 years were categorized into six groups based on the Dutch periodontal screening index. Dental plaques of the adults were collected using paro-toothpick sticks and spread on two Petri dishes, each with four divisions. On Petri dish-A, cannabidiol (CBD), cannabichromene (CBC), cannabinol (CBN), and cannabigerol (CBG) were used, and on Petri dish-B, cannabigerolic acid (CBGA), Oral B, Colgate, and Cannabite F (a toothpaste formulation of pomegranate and algae) were used. The Petri dishes were sealed and incubated, followed by counting the number of colonies.

Results: By evaluating the colony count of the dental bacteria isolated from six groups, it was found that cannabinoids were more effective in reducing the bacterial colony count in dental plaques as compared to the well-established synthetic oral care products such as Oral B and Colgate.

Conclusion: Cannabinoids have the potential to be used as an effective antibacterial agent against dental plaque-associated bacteria. Moreover, it provides a safer alternative for synthetic antibiotics to reduce the development of drug resistance.”

https://www.ncbi.nlm.nih.gov/pubmed/32038896

“To the best of our knowledge, no such study has been published that compares the efficiency of cannabinoids with that of oral care products against dental bacteria. Our study is the first of its kind conducted to compare the efficacy of well-established commercial oral care products and cannabinoids in reducing the bacterial content of the dental plaque. Reducing the bacterial content could significantly decrease and prevent gum diseases that have become a huge global burden owing to their direct relation with systemic diseases. Here we report a preliminary observatory study on effect of cannabinoids on reducing the bacterial content of dental plaque.”

https://www.cureus.com/articles/25300-comparison-of-efficacy-of-cannabinoids-versus-commercial-oral-care-products-in-reducing-bacterial-content-from-dental-plaque-a-preliminary-observation

Uncovering the hidden antibiotic potential of Cannabis.

 Go to Volume 0, Issue ja“The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating exploration of alternative therapies.

Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated.

Here, we show that cannabinoids exhibit antibacterial activity against MRSA, inhibit its ability to form biofilms and eradicate pre-formed biofilms and stationary phase cells persistent to antibiotics.

We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA.

We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane.

Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multi-drug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32017534

https://pubs.acs.org/doi/10.1021/acsinfecdis.9b00419

Antibacterial properties of hemp hurd powder against E. coli

Publication cover image“Hemp (Cannabis sativa L.) is an eco‐friendly and multifunctional plant. Hemp hurd is a by‐product of hemp plant during hemp fiber separation. Although hemp hurd is repeatedly announced owing antibacterial activity, it has never been systematically investigated and reported. In this study, the antibacterial activity of hemp hurd powder against Escherichia coli is investigated. This article reveals antibacterial activity of hemp hurd where hemp hurd powder inhibits the growth of E. coli. Meanwhile, the self‐contamination (forming during retting process) inside hemp hurd has dramatic impact on the antibacterial performance. To achieve better antibacterial activity, hemp hurd was heat treated to eliminate self‐contaminations. The impact of the particle sizes and heat treatment on the antibacterial effectiveness was evaluated.”

https://onlinelibrary.wiley.com/doi/abs/10.1002/app.41588

https://www.researchgate.net/publication/267628173_Antibacterial_Properties_of_Hemp_Hurd_Powder_Against_E_coli

Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles.

 Image result for frontiers in cellular and infection microbiology“Membrane vesicles (MVs) released from bacteria participate in cell communication and host-pathogen interactions.

Roles for MVs in antibiotic resistance are gaining increased attention and in this study we investigated if known anti-bacterial effects of cannabidiol (CBD), a phytocannabinoid from Cannabis sativa, could be in part attributed to effects on bacterial MV profile and MV release.

We found that CBD is a strong inhibitor of MV release from Gram-negative bacteria (E. coli VCS257), while inhibitory effect on MV release from Gram-positive bacteria (S. aureus subsp. aureus Rosenbach) was negligible. When used in combination with selected antibiotics, CBD significantly increased the bactericidal action of several antibiotics in the Gram-negative bacteria.

In addition, CBD increased antibiotic effects of kanamycin in the Gram-positive bacteria, without affecting MV release. CBD furthermore changed protein profiles of MVs released from E. coli after 1 h CBD treatment.

Our findings indicate that CBD may pose as a putative adjuvant agent for tailored co-application with selected antibiotics, depending on bacterial species, to increase antibiotic activity, including via MV inhibition, and help reduce antibiotic resistance.”

https://www.ncbi.nlm.nih.gov/pubmed/31552202

https://www.frontiersin.org/articles/10.3389/fcimb.2019.00324/full 

Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type Cannabis sativa L. (Hemp).

molecules-logo“Volatile terpenes represent the largest group of Cannabis sativa L. components and they are responsible for its aromatic properties. Even if many studies on C. sativa have been focused on cannabinoids, which are terpenophenolics, little research has been carried out on its volatile terpenic compounds.

In the light of all the above, the present work was aimed at the chemical characterization of seventeen essential oils from different fibre-type varieties of C. sativa (industrial hemp or hemp) by means of GC-MS and GC-FID techniques.

In total, 71 compounds were identified, and the semi-quantitative analysis revealed that α- and β-pinene, β-myrcene and β-caryophyllene are the major components in all the essential oils analysed. In addition, a GC-MS method was developed here for the first time, and it was applied to quantify cannabinoids in the essential oils.

The antibacterial activity of hemp essential oils against some pathogenic and spoilage microorganisms isolated from food and food processing environment was also determined. The inhibitory effects of the essential oils were evaluated by both the agar well diffusion assay and the minimum inhibitory concentration (MIC) evaluation. By using the agar diffusion method and considering the zone of inhibition, it was possible to preliminarily verify the inhibitory activity on most of the examined strains.

The results showed a good antibacterial activity of six hemp essential oils against the Gram-positive bacteria, thus suggesting that hemp essential oil can inhibit or reduce bacterial proliferation and it can be a valid support to reduce microorganism contamination, especially in the food processing field.”

https://www.ncbi.nlm.nih.gov/pubmed/31234360

https://www.mdpi.com/1420-3049/24/12/2302