Integrating cannabis into clinical cancer care.

“Cannabis species have been used as medicine for thousands of years; only since the 1940s has the plant not been widely available for medical use.

However, an increasing number of jurisdictions are making it possible for patients to obtain the botanical for medicinal use.

For the cancer patient, cannabis has a number of potential benefits, especially in the management of symptoms. Cannabis is useful in combatting anorexia, chemotherapy-induced nausea and vomiting, pain, insomnia, and depression.

Cannabis might be less potent than other available antiemetics, but for some patients, it is the only agent that works, and it is the only antiemetic that also increases appetite.

Inhaled cannabis is more effective than placebo in ameliorating peripheral neuropathy in a number of conditions, and it could prove useful in chemotherapy-induced neuropathy.

A pharmacokinetic interaction study of vaporized cannabis in patients with chronic pain on stable doses of sustained-release opioids demonstrated no clinically significant change in plasma opiates, while suggesting the possibility of synergistic analgesia.

Aside from symptom management, an increasing body of in vitro and animal-model studies supports a possible direct anticancer effect of cannabinoids by way of a number of different mechanisms involving apoptosis, angiogenesis, and inhibition of metastasis.

Despite an absence of clinical trials, abundant anecdotal reports that describe patients having remarkable responses to cannabis as an anticancer agent, especially when taken as a high-potency orally ingested concentrate, are circulating.

Human studies should be conducted to address critical questions related to the foregoing effects.”

http://www.ncbi.nlm.nih.gov/pubmed/27022315

In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.

“Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance.

Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects.

We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd)…

Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis. Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts.

 

Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.”

http://www.ncbi.nlm.nih.gov/pubmed/27022310

“Neuroblastomas are cancers that start in early nerve cells (called neuroblasts) of the sympathetic nervous system, so they can be found anywhere along this system.”  http://www.cancer.org/cancer/neuroblastoma/detailedguide/neuroblastoma-what-is-neuroblastoma

Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents.

“Treatment of cancer is a significant challenge in clinical medicine, and its research is a top priority in chemical biology and drug discovery. Consequently, there is an urgent need for identifying innovative chemotypes capable of modulating unexploited drug targets.

The transient receptor potential (TRPs) channels persist scarcely explored as targets, despite intervening in a plethora of pathophysiological events in numerous diseases, including cancer.

Both agonists and antagonists have proven capable of evoking phenotype changes leading to either cell death or reduced cell migration.

Among these, natural products entail biologically pre-validated and privileged architectures for TRP recognition.

Furthermore, several natural products have significantly contributed to our current knowledge on TRP biology. In this Tutorial Review we focus on selected natural products, e.g. capsaicinoids, cannabinoids and terpenes, by highlighting challenges and opportunities in their use as starting points for designing natural product-inspired TRP channel modulators.

Importantly, the de-orphanization of natural products as TRP channel ligands may leverage their exploration as viable strategy for developing anticancer therapies.

Finally, we foresee that TRP channels may be explored for the selective pharmacodelivery of cytotoxic payloads to diseased tissues, providing an innovative platform in chemical biology and molecular medicine.”

http://www.ncbi.nlm.nih.gov/pubmed/26890476

http://www.thctotalhealthcare.com/category/cancer/

Cannabinoid pharmacology in cancer research: A new hope for cancer patients?

Image result for Eur J Pharmacol.

“Cannabinoids have been used for many centuries to ease pain and in the past decade, the endocannabinoid system has been implicated in a number of pathophysiological conditions, such as mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis, spinal cord injury, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity, and osteoporosis.

Several studies have demonstrated that cannabinoids also have anti-cancer activity and as cannabinoids are usually well tolerated and do not produce the typical toxic effects of conventional chemotherapies, there is considerable merit in the development of cannabinoids as potential anticancer therapies.

Whilst the presence of psychoactive effects of cannabinoids could prevent any progress in this field, recent studies have shown the value of the non-psychoactive components of cannabinoids in activating apoptotic pathways, inducing anti-proliferative and anti-angiogenic effects.

The aforementioned effects are suggested to be through pathways such as ERK, Akt, mitogen-activated protein kinase (MAPK) pathways, phosphoinositide 3-kinase (PI3K) pathways and hypoxia inducible factor 1 (HIF1), all of which are important contributors to the hallmarks of cancer.

Many important questions still remain unanswered or are poorly addressed thus necessitating further research at basic pre-clinical and clinical levels. In this review, we address these issues with a view to identifying the key challenges that future research needs to address.”

http://www.ncbi.nlm.nih.gov/pubmed/26852955

http://www.thctotalhealthcare.com/category/cancer/

Dronabinol has preferential antileukemic activity in acute lymphoblastic and myeloid leukemia with lymphoid differentiation patterns

Biomed Central logo

“It has been previously demonstrated in several cancer models, that Dronabinol (THC) may have anti-tumor activity – however, controversial data exists for acute leukemia. We have anecdotal evidence that THC may have contributed to disease control in a patient with acute undifferentiated leukemia.

To test this hypothesis, we evaluated the antileukemic efficacy of THC in several leukemia cell lines and native leukemia blasts cultured ex vivo.

We here reveal a novel aspect of dronabinol, a cannabinoid derivative, which displays remarkable antiproliferative as well as proapoptotic efficacy in a distinct leukemia patient cohort – in vitro and in ex vivo native leukemia blasts. It has been previously reported that cannabinoids display anticancer properties. However, due to legal issues the use and exploration of such agents is highly limited in many countries.

Importantly, we demonstrate that antileukemic concentrations are achievable in vivo.

Our study provides rigorous data to support clinical evaluation of THC as a low-toxic therapy option in a well defined subset of acute leukemia patients.”

http://www.ncbi.nlm.nih.gov/pubmed/26775260

http://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-2029-8

The G1359A-CNR1 gene polymorphism is associated to glioma in Spanish patients.

“The cannabinoid receptor gene 1 (CNR1) encodes the human cannabinoid receptor CB1.

This receptor has a widespread distribution in the central nervous system (CNS), the main ligands being anandamide, 2-araquidonoil glycerol and marijuana constituents.

There is evidence to suggest an anti-neoplastic effect of these ligands in glial tissues mediated through stimulation of the receptor.

Our results suggest that allele G of the CNR1 gene could be associated with a lower susceptibility to glioma.”

http://www.ncbi.nlm.nih.gov/pubmed/21156413

“A glioma is a primary brain tumor that originates from the supportive cells of the brain, called glial cells.” http://neurosurgery.ucla.edu/body.cfm?id=159

“Remarkably, cannabinoids kill glioma cells selectively and can protect non-transformed glial cells from death.” http://www.ncbi.nlm.nih.gov/pubmed/15275820

“Cannabinoids, the active components of Cannabis sativa…”  http://www.ncbi.nlm.nih.gov/pubmed/17952650

http://www.thctotalhealthcare.com/category/gllomas/

Cannabinoids inhibit cellular respiration of human oral cancer cells.

Related image

“The primary cannabinoids, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and Delta(8)-tetrahydrocannabinol (Delta(8)-THC) are known to disturb the mitochondrial function and possess antitumor activities. These observations prompted us to investigate their effects on the mitochondrial O(2) consumption in human oral cancer cells (Tu183). This epithelial cell line overexpresses bcl-2 and is highly resistant to anticancer drugs. A rapid decline in the rate of respiration was observed when Delta(9)-THC or Delta(8)-THC was added to the cells. The inhibition was concentration-dependent, and Delta(9)-THC was the more potent of the two compounds. Anandamide (an endocannabinoid) was ineffective; suggesting the effects of Delta(9)-THC and Delta(8)-THC were not mediated by the cannabinoid receptors. These results show the cannabinoids are potent inhibitors of human oral cancer cells (Tu183) cellular respiration and are toxic to this highly malignant tumor.” http://www.ncbi.nlm.nih.gov/pubmed/20516734

https://www.karger.com/Article/Abstract/312686

http://www.thctotalhealthcare.com/category/oral-cancer/

Ligands for cannabinoid receptors, promising anticancer agents.

Image result for Life Sci.

“Cannabinoid compounds are unique to cannabis and provide some interesting biological properties.

These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2.

There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory.

On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer.

According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain.

Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/26764235

http://www.thctotalhealthcare.com/category/cancer/

Anti Proliferative and Pro Apoptotic Effects of Flavonoid Quercetin Are Mediated by CB1 Receptor in Human Colon Cancer Cell Lines.

“Quercetin, the major constituent of flavonoid and widely present in fruits and vegetables, is an attractive compound for cancer prevention due to its beneficial anti proliferative effects, showing a crucial role in the regulation of apoptosis and cell cycle signaling.

In vitro studies have demonstrated that quercetin specifically influences colon cancer cell proliferation.

Our experiments, using human colon adenocarcinoma cells, confirmed the anti proliferative effect of quercetin and gave intriguing new insight in to the knowledge of the mechanisms involved…

These findings open new perspectives for anticancer therapeutic strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/25893829

“Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L.”  http://www.ncbi.nlm.nih.gov/pubmed/15688956

The therapeutic aspects of the endocannabinoid system (ECS) for cancer and their development: from nature to laboratory.

“The endocannabinoid system (ECS) is a group of neuromodulatory lipids and their receptors, which are widely distributed in mammalian tissues. ECS regulates various cardiovascular, nervous, and immune system functions inside cells.

In recent years, there has been a growing body of evidence for the use of synthetic and natural cannabinoids as potential anticancer agents.

For instance, the CB1 and CB2 receptors are assumed to play an important role inside the endocannabinoid system. These receptors are abundantly expressed in the brain and fatty tissue of the human body.

Despite recent developments in molecular biology, there is still a lack of knowledge about the distribution of CB1 and CB2 receptors in the human kidney and their role in kidney cancer. To address this gap, we explore and demonstrate the role of the endocannabinoid system in renal cell carcinoma (RCC).

In this brief overview, we elucidate the therapeutic aspects of the endocannabinoid system for various cancers and explain how this system can be used for treating kidney cancer.

Overall, this review provides new insights into cannabinoids’ mechanisms of action in both in vivo and in vitro models, and focuses on recent discoveries in the field.”