Cannabinoids in the Pathophysiology of Skin Inflammation.

molecules-logo“Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component.

This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer.

In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances.

Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.”

https://www.ncbi.nlm.nih.gov/pubmed/32033005

https://www.mdpi.com/1420-3049/25/3/652

“Cannabinoid Signaling in the Skin: Therapeutic Potential of the “C(ut)annabinoid” System” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429381/

Treatment with Cannabinoids as a Promising Approach for Impairing Fibroblast Activation and Prostate Cancer Progression.

ijms-logo “Endo-, phyto- and synthetic cannabinoids have been proposed as promising anti-cancer agents able to impair cancer cells’ behavior without affecting their non-transformed counterparts.

However, cancer outcome depends not only on cancer cells’ activity, but also on the stromal cells, which coevolve with cancer cells to sustain tumor progression.

Here, we show for the first time that cannabinoid treatment impairs the activation and the reactivity of cancer-associated fibroblasts (CAFs), the most represented stromal component of prostate tumor microenvironment.

Overall, our data strongly support the use of cannabinoids as anti-tumor agents in prostate cancer, since they are able to simultaneously strike both cancer and stromal cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31991773

https://www.mdpi.com/1422-0067/21/3/787

The Endocannabinoid System: A Target for Cancer Treatment.

ijms-logo“In recent years, the endocannabinoid system has received great interest as a potential therapeutic target in numerous pathological conditions.

Cannabinoids have shown an anticancer potential by modulating several pathways involved in cell growth, differentiation, migration, and angiogenesis.

However, the therapeutic efficacy of cannabinoids is limited to the treatment of chemotherapy-induced symptoms or cancer pain, but their use as anticancer drugs in chemotherapeutic protocols requires further investigation.

In this paper, we reviewed the role of cannabinoids in the modulation of signaling mechanisms implicated in tumor progression.”

https://www.ncbi.nlm.nih.gov/pubmed/31979368

https://www.mdpi.com/1422-0067/21/3/747

“In addition to the symptomatic therapy of cancer patients, the antitumor effects of cannabinoids (whether in monotherapy or in combination with other cancer therapies) have promising potential in the treatment of cancer patients.”   https://www.ncbi.nlm.nih.gov/pubmed/31950844
“In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. Thus, numerous studies have provided evidence that thc and other cannabinoids exhibit antitumour effects in a wide array of animal models of cancer.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791144/


“Antitumour actions of cannabinoids.”   https://www.ncbi.nlm.nih.gov/pubmed/30019449 

“The endocannabinoid system as a target for the development of new drugs for cancer therapy” https://www.ncbi.nlm.nih.gov/pubmed/12723496

“Cannabinoids as Anticancer Drugs.”  https://www.ncbi.nlm.nih.gov/pubmed/28826542

http://www.thctotalhealthcare.com/category/cancer/

Monocyclic Quinone Structure-Activity Patterns: Synthesis of Catalytic Inhibitors of Topoisomerase II with Potent Antiproliferative Activity.

Publication cover image“The monocyclic 1,4-benzoquinone, HU-331, the direct oxidation product of cannabidiol, inhibits the catalytic activity of topoisomerase II but without inducing DNA strand breaks or generating free radicals, and unlike many fused-ring quinones exhibits minimal cardiotoxicity. Thus, monocyclic quinones have potential as anticancer agents, and investigation of the structural origins of their biological activity is warranted. New syntheses of cannabidiol and (±)-HU-331 are here reported. Integrated synthetic protocols afforded a wide range of polysubstituted resorcinol derivatives; many of the corresponding novel 2-hydroxy-1,4-benzoquinone derivatives are potent inhibitors of the catalytic activity of topoisomerase II, some more so than HU-331, whose monoterpene unit replaced by a 3-cycloalkyl unit conferred increased antiproliferative properties in cell lines with IC50 values extending below 1 mM, and greater stability in solution than HU-331. The principal pharmacophore of quinones related to HU-331 was identified. Selected monocyclic quinones show potential for the development of new anticancer agents.”

https://www.ncbi.nlm.nih.gov/pubmed/31778038

https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.201900548

Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer.

Image result for cell death and disease“According to recent studies, Cannabidiol (CBD), one of the main components of Cannabis sativa, has anticancer effects in several cancers. However, the exact mechanism of CBD action is not currently understood.

Here, CBD promoted cell death in gastric cancer.

We suggest that CBD induced apoptosis by suppressing X-linked inhibitor apoptosis (XIAP), a member of the IAP protein family. CBD reduced XIAP protein levels while increasing ubiquitination of XIAP. The expression of Smac, a known inhibitor of XIAP, was found to be elevated during CBD treatment. Moreover, CBD treatment increased the interaction between XIAP and Smac by increasing Smac release from mitochondria to the cytosol. CBD has also been shown to affect mitochondrial dysfunction.

Taken together, these results suggest that CBD may have potential as a new therapeutic target in gastric cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31699976

“In conclusion, our study showed that CBD induces apoptotic cell death in gastric cancer cells, which is triggered by ER stress generation and subsequent XIAP inhibition by Smac. Taken together, our results suggest the potential of CBD in novel treatments against gastric cancer.”

 https://www.nature.com/articles/s41419-019-2001-7

figure7

Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion.

Prostaglandins, Leukotrienes and Essential Fatty Acids Home“The anticancer effects of the omega-3 long chain polyunsaturated fatty acids (LCPUFA), EPA and DHA may be due, at least in part, to conversion to their respective endocannabinoid derivatives, eicosapentaenoyl-ethanolamine (EPEA) and docosahexaenoyl-ethanolamine (DHEA).

Here, the effects of EPEA and DHEA and their parent compounds, EPA and DHA, on breast cancer (BC) cell function was examined. EPEA and DHEA exhibited greater anti-cancer effects than EPA and DHA in two BC cells (MCF-7 and MDA-MB-231) whilst displaying no effect in non-malignant breast cells (MCF-10a).

Both BC lines expressed CB1/2 receptors that were responsible, at least partly, for the observed anti-proliferative effects of the omega-3 endocannabinoids as determined by receptor antagonism studies. Additionally, major signalling mechanisms elicited by these CB ligands included altered phosphorylation of p38-MAPK, JNK, and ERK proteins.

Both LCPUFAs and their endocannabinoids attenuated the expression of signal proteins in BC cells, albeit to different extents depending on cell type and lipid effectors. These signal proteins are implicated in apoptosis and attenuation of BC cell migration and invasiveness.

Furthermore, only DHA reduced in vitro MDA-MB-231 migration whereas both LCPUFAs and their endocannabinoids significantly inhibited invasiveness. This finding was consistent with reduced integrin β3 expression observed with all treatments and reduced MMP-1 and VEGF with DHA treatment.

Attenuation of cell viability, migration and invasion of malignant cells indicates a potential adjunct nutritional therapeutic use of these LCPUFAs and/or their endocannabinoids in treatment of breast cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31679810

https://www.plefa.com/article/S0952-3278(19)30112-7/fulltext

Antitumor Activity of Abnormal Cannabidiol and Its Analog O-1602 in Taxol-Resistant Preclinical Models of Breast Cancer.

Image result for frontiers in pharmacology“Cannabinoids exhibit anti-inflammatory and antitumorigenic properties.

Contrary to most cannabinoids present in the Cannabis plant, some, such as O-1602 and abnormal cannabidiol, have no or only little affinity to the CB1 or CB2 cannabinoid receptors and instead exert their effects through other receptors.

Here, we investigated whether the synthetic regioisomers of cannabidiol, abnormal cannabidiol, and a closely related compound, O-1602, display antitumorigenic effects in cellular models of breast cancer and whether it could reduce tumorigenesis in vivo.

Several studies have shown the effects of cannabinoids on chemotherapy-sensitive breast cancer cell lines, but less is known about the antitumorigenic effects of cannabinoids in chemotherapy-resistant cell lines.

Paclitaxel-resistant MDA-MB-231 and MCF-7 breast cancer cell lines were used to study the effect of O-1602 and abnormal cannabidiol on viability, apoptosis, and migration. The effects of O-1602 and abnormal cannabidiol on cell viability were completely blocked by the combination of GPR55 and GPR18-specific siRNAs. Both O-1602 and abnormal cannabidiol decreased viability in paclitaxel-resistant breast cancer cells in a concentration-dependent manner through induction of apoptosis. The effect of these cannabinoids on tumor growth in vivo was studied in a zebrafish xenograft model. In this model, treatment with O-1602 and abnormal cannabidiol (2 µM) significantly reduced tumor growth.

Our results suggest that atypical cannabinoids, like O-1602 and abnormal cannabidiol, exert antitumorigenic effects on paclitaxel-resistant breast cancer cells. Due to their lack of central sedation and psychoactive effects, these atypical cannabinoids could represent new leads for the development of additional anticancer treatments when resistance to conventional chemotherapy occurs during the treatment of breast and possibly other cancers.”

https://www.ncbi.nlm.nih.gov/pubmed/31611800

“Our results suggest that some cannabinoids acting through the GPR55 and/or GPR18 receptors can be helpful in inducing apoptosis in breast cancer cell lines that are unresponsive to paclitaxel. The effects of O-1602 and Abn-CBD on cell viability were observed both in vitro and in a zebrafish xenograft model. These drugs were also reducing cell migration. Taken together, even if no synergistic antitumor effect is always observed when cannabinoids and chemotherapeutic agents are combined as an anticancer treatment, cannabinoids can still provide anticancer benefits on top of their palliative effects. This is particularly important in the context of cancers that have developed resistance to current chemotherapies.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.01124/full

Cannabidiol directly targets mitochondria and disturbs calcium homeostasis in acute lymphoblastic leukemia.

 Image result for cell death & disease“Anticancer properties of non-psychoactive cannabinoid cannabidiol (CBD) have been demonstrated on tumors of different histogenesis. Different molecular targets for CBD were proposed, including cannabinoid receptors and some plasma membrane ion channels. Here we have shown that cell lines derived from acute lymphoblastic leukemia of T lineage (T-ALL), but not resting healthy T cells, are highly sensitive to CBD treatment. CBD effect does not depend on cannabinoid receptors or plasma membrane Ca2+-permeable channels. Instead, CBD directly targets mitochondria and alters their capacity to handle Ca2+. At lethal concentrations, CBD causes mitochondrial Ca2+ overload, stable mitochondrial transition pore formation and cell death. Our results suggest that CBD is an attractive candidate to be included into chemotherapeutic protocols for T-ALL treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31611561

“Considering the pivotal role of mitochondria in oncogenic re-programming, CBD may be plausible candidate to be included into chemotherapeutic protocols.”

https://www.nature.com/articles/s41419-019-2024-0

Cannabis use in cancer: a survey of the current state at BC Cancer before recreational legalization in Canada.

Image result for Curr Oncol.“Cancer patients experience multiple symptoms throughout their illness, and some report benefit from the use of cannabis. There are concerns that many patients are accessing products inappropriate for their situation and potentially putting themselves at risk.

In the present study, we aimed to capture the prevalence of cannabis use among cancer patients at BC Cancer before recreational legalization in Canada and to identify the reasons that patients take cannabis, the various routes of administration they use, and the reasons that prior users stopped.

RESULTS:

Of surveys sent to 2998 patients, 821 (27.4%) were returned and included in analysis. Of those respondents, 23% were currently using cannabis-based products, almost exclusively for medical purposes, and an additional 28% had been users in the past (most often recreationally). Of the patients currently using cannabis, 31% had medical authorization. The most common symptoms that the current users were targeting were pain, insomnia, nausea, and anxiety; many were also hoping for anticancer effects.

CONCLUSIONS:

More than half the respondents had tried cannabis at some time, and almost one quarter of respondents were currently taking cannabis to help manage their symptoms or treat their cancer, or both. Many more patients would consider use with appropriate guidance from a health care professional. More research is needed to inform physicians and patients about safe uses and doses and about the potential adverse effects of cannabis use.”

https://www.ncbi.nlm.nih.gov/pubmed/31548810

Evaluation of the effects of cannabinoids CBD and CBG on human ovarian cancer cells in vitro

University of Huddersfield“Ovarian cancer, with over a 90% reoccurrence within 18 months of treatment, and approximately a 30% mortality rate after 5 years, is the leading cause of death in cases of gynaecological malignancies. Acquired resistance, and toxic side effects by clinically used agents are major challenges associated with current treatments, indicating the need for new approaches in ovarian cancer treatment.

Increased tumour cell proliferation associated with upregulation of cannabinoid (CB) receptors has been observed in ovarian cancer. As cannabinoids reported to bind to CB receptors, and can potentially modulate their downstream signalling, this raises the possibility of cannabinoids as potential anticancer drugs for ovarian cancer treatment.

Amongst the cannabinoids, non-psychoactive CBD and CBG have been shown to have anticancer activities towards prostate and colon cancer cells through multiple mechanisms of action. However, CBD and CBG have yet to be investigated in relation to ovarian cancer therapy either in vitro or in vivo.

Aim:

The aims of this study were to evaluate the potential cytotoxic effects of CBD and CBG in human ovarian cancer cells, their ability to potentiate existing clinically used agents for ovarian cancer, and to perform initial mode of action studies in vitro.

Conclusions:

Both CBD and CBG showed preferential cytotoxicity against the ovarian cancer cells analysed compared to the non-cancer cells; however, this was less than for carboplatin. Importantly, in contrast to carboplatin, CBD and CBG showed similar activity towards cisplatin sensitive and cisplatin resistant cells indicating distinctive mechanisms of action to platinum drugs.

Preferential cytotoxicity towards cancer cells in vitro and ability to potentiate carboplatin and overcome cisplatin resistance identify CBD and CBG as promising candidates that warrant further investigation, both in terms of detailed mechanism of action studies and also in vivo studies to assess whether this promising activity translates into an in vivo setting and their potential for further progression towards the clinic.”

http://eprints.hud.ac.uk/id/eprint/34866/