Modulation of the Endocannabinoid System as a Potential Anticancer Strategy.

 Image result for frontiers in pharmacology“Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoidreceptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31143113

“In addition to the palliative effects of cannabinoid compounds in cancer treatment, the endocannabinoid system provides several targets for systemic anticancer treatment. Accordingly, preclinical studies suggest cannabinoids inhibit cancer progression via inhibition of cancer cell proliferation, neovascularization, invasion and chemoresistance, as well as induction of apoptosis, autophagy and increase of tumor immune surveillance.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.00430/full

Cannabinoid WIN 55,212-2 induces cell cycle arrest and apoptosis, and inhibits proliferation, migration, invasion, and tumor growth in prostate cancer in a cannabinoid-receptor 2 dependent manner.

The Prostate banner

“Cannabinoids have demonstrated anticarcinogenic properties in a variety of malignancies, including in prostate cancer.

In the present study, we explored the anti-cancer effects of the synthetic cannabinoid WIN 55,212-2 (WIN) in prostate cancer.

RESULTS:

WIN significantly reduced prostate cancer cell proliferation, migration, invasion, induced apoptosis, and arrested cells in Go/G1 phase in a dose-dependent manner. Mechanistic studies revealed these effects were mediated through a pathway involving cell cycle regulators p27, Cdk4, and pRb. Pre-treatment with a CB2 antagonist, AM630, followed by treatment with WIN resulted in a reversal of the anti-proliferation and cell cycle arrest previously seen with WIN alone. In vivo, administration of WIN resulted in a reduction in the tumor growth rate compared to control (P < 0.05).

CONCLUSIONS:

The following study provides evidence supporting the use of WIN as a novel therapeutic for prostate cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/30242861

https://onlinelibrary.wiley.com/doi/abs/10.1002/pros.23720

Cannabinoids as Anticancer Drugs.

Advances in Pharmacology

“The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics’ effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression.”

https://www.ncbi.nlm.nih.gov/pubmed/28826542

http://www.sciencedirect.com/science/article/pii/S105435891730039X?via%3Dihub

A New Study Suggests Cannabis Could Treat Cervical Cancer

Image result for motherboard logo

“A new study suggests that cannabis might be useful in treating cervical cancer.

Through in vitro, or test tube/petri dish, analysis, researchers from the biochemistry department at North-West University in Potchefstroom, South Africa found that the non-psychotropic cannabinoid, or chemical compound, CBD (cannabidiol), taken from a Cannabis sativa extract, could hold anticarcinogenic properties. They pointed out that cannabis acted on the cancerous cells through apoptosis, or a process of cell death, causing only the cancerous cells to kill themselves, and inhibiting their growth.

Cervical cancer is no longer a leading cause of death as much as it used to be in the United States, thanks in large part to the widespread use of pap smears, but it’s still a widespread threat. And in Sub-Saharan Africa, it kills 250,000 women every year. “This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies,” the study’s authors wrote in the BMC Complementary and Alternative Medicine journal. “In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines.”

It will take much more research before cannabis can be integrated into official cervical cancer treatments in sub-Saharan Africa. But earlier studies also shows that cannabis has been useful in treating not only the symptoms of cancer and chemotherapy, but also the cancer itself.

One study from the journal of Current Clinical Pharmacology found that cannabis served as a preventative agent, reducing inflammation, which researchers also said was useful in reducing the likelihood of cancer. Another study from Oncology Hematology also noted cannabis’ anti-cancer effects, explaining how the plant’s cannabinoids inhibited tumor growth in vitro, such as in a petri dish or test tube, and in vivo, or a living organism.

A handful of other studies have also looked into cannabis as a treatment specifically for cervical cancer. Another from the University Hospital in Geneva, Switzerland, found that the cannabinoids, including the body’s own endocannabinoids, offered “attractive opportunities for the development of novel potent anticancer drugs.”

With that said, often medical marijuana is ingested via capsules, tinctures, vaporizable oils, and other non-smokeable, more pharmaceutical-style forms. Should cannabis eventually become approved for cervical cancer treatment in Africa, it may be up for debate whether whole plant therapy (in which all the cannabinoids work synergistically through the “entourage effect”) or specific cannabinoid therapy is best.”

http://motherboard.vice.com/read/a-new-study-suggests-cannabis-could-treat-cervical-cancer

COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.

Figure 7.

“Within the last decade, evidence has been accumulated to suggest an antitumorigenic action of cannabinoids elicited via induction of apoptosis and alternative anticarcinogenic mechanisms… cannabidiol has been shown to elicit pronounced proapoptotic or autophagic effects on different types of tumor cells

This study investigates the role of COX-2 and PPAR-γ in cannabidiol’s proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis… our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ…

Collectively, our data strengthen the notion that activation of PPAR-γ may present a promising target for lung cancer therapy.

In addition and to the best of our knowledge, this is the first report to provide an inhibitor-proven tumor-regressive mechanism of cannabidiolin vivo as well as a proapoptotic mechanism confirmed by use of primary lung tumor cells.

Against this background and considering recent findings supporting a profound antimetastatic action of cannabidiol, this cannabinoid may represent a promising anticancer drug.”

http://mct.aacrjournals.org/content/12/1/69.long

http://www.thctotalhealthcare.com/category/lung-cancer/

THC is anticarcinogenic: marijuana may be cancer cure!

“Toxicology and Carcinogenesis Studies of 1-Trans-[Delta.sup.9]-Tetrahydrocannabinol

Summation of above:

“Thus, in our studies, rats and mice that received THC for 2 years exhibited body weight reductions, enhanced survival rates, and decreased tumor incidences in several sites, mainly organs under hormonal control. These earlier experimental carcinogenesis results on THC clearly lend further validity to the notion that cannabinoids may indeed be anticarcinogenic.””

 link
http://www.thefreelibrary.com/Antitumor+Effects+of+THC-a06814…

http://www.sodahead.com/united-states/thc-is-anticarcinogenic-marijuana-may-be-cancer-cure/question-1031413/?link=ibaf&q=THC+anti-carcinogenic+news

Antitumor Effects of THC.

“1-Trans-[delta.sup.9]-tetrahydrocannabinol (THC) the main active component of marijuana, has been shown to exhibit anticancer activity.

Galve-Roperh et al. reported that intratumoral administration of THC induces apoptosis of transformed neural cells in culture, and also induces a considerable regression of malignant gliomas in Wistar rats and in mice… These authors suggest that their “results may provide the basis for a new therapeutic approach for the treatment of malignant gliomas.”

Thus, in our studies, rats and mice that received THC for 2 years exhibited body weight reductions, enhanced survival rates, and decreased tumor incidences in several sites, mainly organs under hormonal control.

These earlier experimental carcinogenesis results on THC clearly lend further validity to the notion that cannabinoids may indeed be anticarcinogenic.”

http://www.thefreelibrary.com/Antitumor+Effects+of+THC.-a068148345

“Antitumor effects of THC.” http://www.ncbi.nlm.nih.gov/pubmed/11097557

A Population-based Case-Control Study of Marijuana Use and Head and Neck Squamous Cell Carcinoma

Logo of nihpa

“Marijuana (Cannabis sativa) contains more than 60 unique compounds known as cannabinoids. Cannabinoids, constituents of marijuana smoke, have been recognized to have potential antitumor properties. However, the epidemiological evidence addressing the relationship between marijuana use and the induction of head and neck cancer (HNSCC) is inconsistent and conflicting. An early epidemiological study reported that marijuana use was associated with an elevated risk for head and neck cancer.  However, more recent studies have failed to confirm the association of marijuana use with an increased head and neck cancer risk.

 In fact, many of these studies reported non-significant protective estimates of effect, consistent with a possible anticarcinogenic action of cannabinoids.

A recent epidemiologic review raised the need for additional, well conducted, large studies to clarify the nature of the association of marijuana use with the risk of cancer, especially head and neck cancer. In order to further elucidate the association between marijuana use and head neck cancer risk, we assessed marijuana use in detail in a population-based case-control study.

After adjusting for potential confounders (including smoking and alcohol drinking), 10 to 20 years of marijuana use was associated with a significantly reduced risk of HNSCC.

Our study suggests that moderate marijuana use is associated with reduced risk of HNSCC.”

Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.

Cover image

“Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls.

Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.”  http://www.ncbi.nlm.nih.gov/pubmed/19914218

http://www.sciencedirect.com/science/article/pii/S000629520900971X

Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1.

JNCI: Journal of the National Cancer Institute

“Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion.”

“Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.”

“There is considerable evidence to suggest an important role for cannabinoids in conferring anticarcinogenic activities. In this study, we identified TIMP-1 as a mediator of the anti-invasive actions of MA, a hydrolysis-stable analog of the endocannabinoid anandamide, and THC, a plant-derived cannabinoid.”

“In conclusion, our results suggest that there exists a signaling pathway by which the binding of cannabinoids to specific receptors leads via intracellular MAPK activation to induction of TIMP-1 expression and subsequent inhibition of tumor cell invasion. To our knowledge, this is the first report of TIMP-1–dependent anti-invasive effects of cannabinoids.”

http://jnci.oxfordjournals.org/content/100/1/59.long