Epileptiform seizures in domestic fowl. V. The anticonvulsant activity of delta9-tetrahydrocannabinol.

Abstract

“The anticonvulsant activity of delta9-tetrahydrocannabinol (delta9-THC) has been determined against seizures induced in epileptic chickens by intermittent photic stimulation (IPS) and in epileptic and nonepileptic chickens by Metrazol. Intravenous administration of the drug reduced both the severity and incidence of seizures evoked by IPS in epileptic chickens. This anticonvulsant action was accompanied by a reduction in frequency of inter-ictal slow-wave high-voltage electroencephalographic activity and by the absence of spiking during IPS. delta9-THC did not affect the incidence of Metrazol-induced seizures in epileptic or nonepileptic chickens.”

http://www.ncbi.nlm.nih.gov/pubmed/1222370

Anticonvulsant activity of delta9-tetrahydrocannabinol compared with three other drugs.

Abstract

“Delta9-tetrahydrocannabinol (THC) was compared with diphenylhydantoin (DPH), phenobarbital (PB) and chlordiazepoxide (CDP) using several standard laboratory procedures to determine anticonvulsant activity in mice, i.e., the maximal electroshock test (MES), and seizures induced by pentylenetetrazol, strychnine and nicotine. In the MES test, THC was the least potent and DPH the most potent blocker of hind limb tonic extensor convulsions whereas THC was the most potent and DPH the least potent in increasing the latency to this response and in preventing mortality. Seizures and mortality induced by pentylenetetrazol or by strychnine were enhanced by THC and DPH and were blocked by PB and CDP. In the test with nicotine, none of the four anticonvulsant agents prevented seizures; DPH was the only one which failed to increase latency; THC and DPH were less potent than PB and CDP in preventing mortality. THC most closely resembled DPH in the tests with chemical convulsant agents, but a sedative action of THC, resembling that of PB and CDP, was indicated by low ED5 0 for increased latency and for prevention of mortality in the MES test.”

http://www.ncbi.nlm.nih.gov/pubmed/1253828

Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures.

    “Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazole-induced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention… These results extend the anti-convulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.”

http://www.ncbi.nlm.nih.gov/pubmed/22520455

Cannabidivarin is anticonvulsant in mouse and rat.

“Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in vivo seizure models.”

 

“CONCLUSIONS AND IMPLICATIONS:

These results indicate that CDBV is an effective anticonvulsant across a broad range of seizure models, does not significantly affect normal motor function and therefore merits further investigation in chronic epilepsy models to justify human trials.”

http://www.ncbi.nlm.nih.gov/pubmed/22970845

Δ⁹-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats.

“PURPOSE:

We assessed the anticonvulsant potential of the phytocannabinoid Δ⁹-tetrahydrocannabivarin (Δ⁹-THCV) by investigating its effects in an in vitro piriform cortex (PC) brain slice model of epileptiform activity, on cannabinoid CB1 receptor radioligand-binding assays and in a generalized seizure model in rats.”

“DISCUSSION:

These data demonstrate that Δ⁹-THCV exerts antiepileptiform and anticonvulsant properties, actions that are consistent with a CB1 receptor-mediated mechanism and suggest possible therapeutic application in the treatment of pathophysiologic hyperexcitability states.”

http://www.ncbi.nlm.nih.gov/pubmed/20196794

Endocannabinoids and Their Implications for Epilepsy

“This review covers the main features of a newly discovered intercellular signaling system in which endogenous ligands of the brain’s cannabinoid receptors, or endocannabinoids, serve as retrograde messengers that enable a cell to control the strength of its own synaptic inputs. Endocannabinoids are released by bursts of action potentials, including events resembling interictal spikes, and probably by seizures as well. Activation of cannabinoid receptors has been implicated in neuroprotection against excitotoxicity and can help explain the anticonvulsant properties of cannabinoids that have been known since antiquity.”

“Cannabis in its various forms, including marijuana and hashish, is produced from the flowers and leaves of the hemp plant, Cannabis sativa. Through their primary psychoactive ingredient, Δ9-tetrahydrocannabinol (THC), these drugs affect the central nervous system by activating specific membrane-bound receptors. The primary brain receptors, cannabinoid receptors type 1 (CB1), are G protein–coupled, seven-transmembrane domain proteins that share numerous similarities with heterotrimeric G protein–coupled receptors for conventional neurotransmitters such as γ-aminobutyric acid (GABA) and glutamate. The CB1s bind THC with a high degree of selectivity and are heterogeneously distributed throughout the brain. Inasmuch as THC is a plant-derived compound not produced in mammals, endogenous ligands must exist for the cannabinoid receptor, that is, endocannabinoids. Indeed, several endogenous ligands for CB1 have been discovered, with anandamide being the first. Anandamide and 2-arachidonoyl glycerol (2-AG), are thought to be the major brain endocannabinoids, with regional differences in which one or the other predominates. Endocannabinoids have been strongly implicated in a growing variety of physiologic phenomena, including regulation of eating, anxiety, pain, extinction of aversive memories, and neuroprotection. Potent agonists and antagonists for CB1 exist and may serve as the foundation of new therapeutic strategies for treating pathologies. The voluminous work summarized here has been extensively covered in recent reviews on cannabinoid neurochemistry and pharmacology as well as neurophysiology. This review focuses on the neurophysiology of the endocannabinoid systems.”

“Conclusion

From what is known about their synthesis and release, endocannabinoids should be produced under many conditions of increased neuronal excitability and specific intercellular signaling. For example, an epileptic seizure, with its large swings in transmembrane voltage, increases in intracellular calcium, and marked release of neurotransmitters, such as acetylcholine and glutamate, should prominently release endocannabinoids. Indeed, seizures induced by kainic acid (a glutamate agonist) increase hippocampal levels of anandamide in normal and wild-type mice. Intriguingly, CB1 knockout mice and normal mice treated with a CB1 antagonist had more pronounced seizures and more severe excitotoxic cell death than untreated normal mice. Although the detailed mechanisms of neuroprotection have not been worked out, the rapid increases in expression of the immediate early genes, c-fos and zipf268, and subsequent increase in brain-derived neurotrophic factor (BDNF) normally induced by kainic acid, were absent in the CB1 knockout mice. The results complement previous evidence that exogenous cannabinoids can be neuroprotective and show that CB1 activation by seizure-induced release of endocannabinoids also is normally neuroprotective.”

“The important new directions being opened by investigations of endocannabinoids underscore the prescient opinion of Robert Christison, who, in 1848, noting its various beneficial effects, argued that cannabis “is a remedy which deserves a more extensive inquiry…””

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176361/

The Endogenous Cannabinoid System Regulates Seizure Frequency and Duration in a Model of Temporal Lobe Epilepsy

“Several lines of evidence suggest that cannabinoid compounds are anticonvulsant. However, the anticonvulsant potential of cannabinoids and, moreover, the role of the endogenous cannabinoid system in regulating seizure activity has not been tested in an in vivo model of epilepsy that is characterized by spontaneous, recurrent seizures. Here, using the rat pilocarpine model of epilepsy, we show that the marijuana extract Δ9-tetrahydrocannabinol (10 mg/kg) as well as the cannabimimetic, 4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1-i,j]quinolin-6-one [R(+)WIN55,212 (5 mg/kg)], completely abolished spontaneous epileptic seizures. Conversely, application of the cannabinoid CB1 receptor (CB1) antagonist, N-(piperidin-1-yl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A), significantly increased both seizure duration and frequency. In some animals, CB1 receptor antagonism resulted in seizure durations that were protracted to a level consistent with the clinical condition status epilepticus… These data indicate not only anticonvulsant activity of exogenously applied cannabinoids but also suggest that endogenous cannabinoid tone modulates seizure termination and duration through activation of the CB1 receptor… By demonstrating a role for the endogenous cannabinoid system in regulating seizure activity, these studies define a role for the endogenous cannabinoid system in modulating neuroexcitation and suggest that plasticity of the CB1 receptor occurs with epilepsy.”

“Characterized by spontaneously recurrent seizures, epilepsy is one of the most common neurological conditions. Understanding the factors that contribute to seizure initiation and termination has important implications for our ability to treat epilepsy and for the potential development of novel anticonvulsant agents. Previous evidence has suggested that the endogenous cannabinoid system may be a novel locus of anticonvulsant activity in the brain. Using the maximal electroshock model of short-term seizure, our laboratory determined that cannabinoid compounds block seizure spread via a cannabinoid CB1 receptor-dependent mechanism. Further study revealed that application of a CB1 receptor antagonist lowered the electroshock seizure threshold, indicating that elimination of endogenous cannabinoid tone at the CB1 receptor may increase seizure susceptibility.”

“The CB1 receptor is the most highly expressed G-protein-coupled receptor in brain and has been implicated in regulation of neuronal excitability. The endogenous cannabinoids, arachidonylethanolamine and 2-arachidonylglycerol (2-AG), are synthesized “on demand” in response to sustained neuronal depolarization and elevated intracellular calcium levels; both of these events occur with seizure activity. The neuronal hyperexcitability that accompanies seizure discharge may stimulate endogenous cannabinoid synthesis and subsequently result in CB1 receptor activation. In light of cannabinoid effects on neurotransmission, increased CB1 receptor activation could influence seizure activity. However, no studies have evaluated the role of the endogenous cannabinoid system in an intact model of epilepsy.”

“This study was initiated to evaluate the role of the CB1 receptor and the endogenous cannabinoid system in regulating seizure activity in a long-term model of epilepsy. We used the pilocarpine model of temporal lobe, partial-complex epilepsy; a rat model of acquired, refractory epilepsy that produces spontaneous recurrent seizures for the lifetime of the animal. The pilocarpine model has been shown to closely resemble human refractory partial-complex epilepsy. In this study, seizure frequency and duration were determined by continuous electrographic and video recording of each epileptic animal. The CB1 receptor agonists R(+)WIN55,212 and Δ9-tetrahydrocannabinol (THC) were evaluated for anticonvulsant efficacy. In addition to agonist effects on seizure activity, the effect of CB1 receptor antagonism on seizure frequency and duration was evaluated using the specific antagonist SR141716A. Hippocampal levels of 2-AG during short-term, pilocarpine-induced seizures were measured to determine whether a correlation exists between endogenous cannabinoid synthesis and seizure activity. In addition, Western blot and immunohistochemical analyses were used to evaluate hippocampal CB1 receptor protein expression in the brains of chronically epileptic and sham control rats. The findings presented suggest an anticonvulsant role for the endogenous cannabinoid system and demonstrate that long-term plasticity of the CB1 receptor occurs with epilepsy.”

“Therapeutic Implications for Cannabinoids in the Treatment of Epilepsy. Seizures in patients with refractory, partial-complex epilepsy can be difficult to control despite the use of currently available anticonvulsant medications and surgical interventions. Therefore, there is a clear need for the development of more effective anticonvulsant agents. Some epilepsy patients, seeking alternative treatments, have perceived improvement with marijuana. This has prompted several countries to consider the legalization of marijuana for epilepsy treatment. The pilocarpine model represents a refractory epileptic condition that is not readily treated by conventional anticonvulsants. Our results demonstrate that activation of the CB1 receptor by cannabinoid drugs and possibly endogenous ligands significantly alters seizure activity and is more effective than conventional anticonvulsants in treating the refractory seizures produced in the pilocarpine model. Although the dose dependence and long-term effects of cannabinoid administration on epilepsy must be further investigated, the results presented here provide evidence that warrants a comprehensive assessment of cannabinoid use in the control of refractory epilepsy via the use of animal models and placebo-controlled clinical trials. Although the psychoactive side effects of cannabinoids make their use in the treatment of epilepsy impractical, understanding the mechanisms of endogenous cannabinoid-mediated anticonvulsant action may lead to the development of novel compounds that do not manifest behavioral toxicity. Further investigation of the cannabinoid anticonvulsant phenomenon may illuminate novel therapeutic targets for the treatment of temporal lobe epilepsy as well as more clearly define the physiological function of the endogenous cannabinoid system in brain.”

http://jpet.aspetjournals.org/content/307/1/129.long

Anticonvulsant action of cannabis in the rat: role of brain monoamines.

Abstract

“The role of brain monoamines in the anticonvulsant action of Cannabis indica resin (CI), against maximal electroshock-induced seizures in albino rats, was investigated by using pharmacologic agents that influence brain monoamine activity. Delta-9-tetrahydrocannabinol content of cannabis resin was estimated to be 17%. The anticonvulsant action of CI (200 mg/kg, i.p.) was significantly inhibited after pretreatment with drugs that reduce brain serotonin activity but not by drugs that reduce brain catecholamine activity. Similarly, the anticonvulsant action of a subanticonvulsant dose (50 mg/kg, i.p.) of CI was potentiated by serotonin precursors but not by catecholamine precursors. Potentiation of the anticonvulsant action of CI by nialamide or by imipramine was inhibited after pretreatment with 5,6-dihydroxytryptamine. The results suggest that the anticonvulsant action of CI in the rat is serotonin- and not catecholamine-mediated.”

http://www.ncbi.nlm.nih.gov/pubmed/104333

Convulsions associated with the use of a synthetic cannabinoid product.

Abstract

“INTRODUCTION:

Clinical presentations following the use of various “spice” or synthetic cannabinoids have included agitation, anxiety, emesis, hallucinations, psychosis, tachycardia, and unresponsiveness. Convulsions were described in a one report although there was not laboratory confirmation for synthetic cannabinoids. In another published report laboratory confirmation for a synthetic cannabinoid was done in which the patient manifested activity that was interpreted as a possible convulsion.

CASE REPORT:

We describe a patient who had two witnessed generalized convulsions soon after smoking a “spice” product that we later confirmed to have four different synthetic cannabinoids.

DISCUSSION:

Convulsions have only rarely been associated with marijuana exposures. Recreational use of synthetic cannabinoids is a very recent phenomenon and there is a very limited, albeit burgeoning, literature detailing the associated complications including convulsions we have reported here. The absence of anticonvulsant phytocannabinoids in spice products could potentially be one of multiple unknown mechanisms contributing to convulsions.”

http://www.ncbi.nlm.nih.gov/pubmed/22160733

Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects?

Abstract

  “Cannabis is under clinical investigation to assess its potential for medicinal use, but the question arises as to whether there is any advantage in using cannabis extracts compared with isolated Delta9-trans-tetrahydrocannabinol (Delta9THC), the major psychoactive component. We have compared the effect of a standardized cannabis extract (SCE) with pure Delta9THC, at matched concentrations of Delta9THC, and also with a Delta9THC-free extract (Delta9THC-free SCE), using two cannabinoid-sensitive models, a mouse model of multiple sclerosis (MS), and an in-vitro rat brain slice model of epilepsy. Whilst SCE inhibited spasticity in the mouse model of MS to a comparable level, it caused a more rapid onset of muscle relaxation, and a reduction in the time to maximum effect compared with Delta9THC alone. The Delta9THC-free extract or cannabidiol (CBD) caused no inhibition of spasticity. However, in the in-vitro epilepsy model, in which sustained epileptiform seizures were induced by the muscarinic receptor agonist oxotremorine-M in immature rat piriform cortical brain slices, SCE was a more potent and again more rapidly-acting anticonvulsant than isolated Delta9THC, but in this model, the Delta9THC-free extract also exhibited anticonvulsant activity. Cannabidiol did not inhibit seizures, nor did it modulate the activity of Delta9THC in this model. Therefore, as far as some actions of cannabis were concerned (e.g. antispasticity), Delta9THC was the active constituent, which might be modified by the presence of other components. However, for other effects (e.g. anticonvulsant properties) Delta9THC, although active, might not be necessary for the observed effect. Above all, these results demonstrated that not all of the therapeutic actions of cannabis herb might be due to the Delta9THC content.”

http://www.ncbi.nlm.nih.gov/pubmed/14738597