Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons

fx1

“Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury.

In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen–glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line.

This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.

Cannabidiol (CBD) is a nonpsychoactive cannabinoid derived from Cannabis sativa and a weak CB1 and CB2 cannabinoid receptor antagonist, with very low toxicity for humans. It has recently been demonstrated in vivo and in vitro that CBD has a variety of therapeutic properties, exerting antidepressant, anxiolytic, anti-inflammatory, immunomodulatory, and neuroprotective effects.  Our results provide novel insight into the neuroprotective properties of CBD, which involves the regulation of the mitochondrial bioenergetics and the glucose metabolism of hippocampal neurons during OGD/R injury.

In summary, our results suggest that CBD exerts a potent neuroprotective effect against ischemia/reperfusion injury by attenuating intracellular oxidative stress, enhancing mitochondrial bioenergetics, and optimizing glucose metabolism via the pentose-phosphate pathway, thus strengthening the antioxidant defenses and preserving the energy homeostasis of neurons. More in-depth studies are required to investigate the precise mechanism underlying the success of CBD treatment and to determine the actual role of CBD in cerebral ischemia.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247568/

“Cannabidiol may soon be used in the emergency room to fight effects of stroke and cardiac emergencies” http://www.naturalnews.com/2017-02-21-cannabidiol-may-soon-be-used-in-the-emergency-room-to-fight-effects-of-stroke-cardiac-emergencies.html

Activation of cannabinoid receptors elicits antidepressant-like effects in a mouse model of social isolation stress.

Image result for Brain Res Bull.

“Social isolation stress (SIS) paradigm is a chronic stress procedure able to induce profound behavioral and neurochemical changes in rodents and evokes depressive and anxiety-like behaviors.

Recent studies demonstrated that the cannabinoid system plays a key role in behavioral abnormalities such as depression through different pathways; however, there is no evidence showing a relation between SIS and the cannabinoid system.

This study investigated the role of the cannabinoid system in depressive-like behavior and anxiety-like behavior of IC animals.

Our findings suggest that the cannabinoid system is involved in depressive-like behaviors induced by SIS.

We showed that activation of cannabinoid receptors (type 1 and 2) could mitigate depression-like behavior induced by SIS in a mouse model.”

https://www.ncbi.nlm.nih.gov/pubmed/28161196

Endocannabinoid system: Role in depression, reward and pain control (Review).

 

“Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society.

In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoidreceptor type 1 (CB1) and CB2.

Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively.

These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes.

Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain.

Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain.

Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined.”

http://www.ncbi.nlm.nih.gov/pubmed/27484193

Cannabinoids in bipolar affective disorder: a review and discussion of their therapeutic potential.

“Bipolar affective disorder is often poorly controlled by prescribed drugs.

Cannabis use is common in patients with this disorder and anecdotal reports suggest that some patients take it to alleviate symptoms of both mania and depression.

We undertook a literature review of cannabis use by patients with bipolar disorder and of the neuropharmacological properties of cannabinoids suggesting possible therapeutic effects in this condition.

No systematic studies of cannabinoids in bipolar disorder were found to exist, although some patients claim that cannabis relieves symptoms of mania and/or depression.

The cannabinoids Delta(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) may exert sedative, hypnotic, anxiolytic, antidepressant, antipsychotic and anticonvulsant effects.

Pure synthetic cannabinoids, such as dronabinol and nabilone and specific plant extracts containing THC, CBD, or a mixture of the two in known concentrations, are available and can be delivered sublingually.

Controlled trials of these cannabinoids as adjunctive medication in bipolar disorder are now indicated.”

http://www.ncbi.nlm.nih.gov/pubmed/15888515

The cannabinoids: therapeutic potentials.

 

“A review of the therapeutic potentials of the cannabinoids is presented. With respect to the antifertility aspects of cannabinoids, 2 mg delta 9-THC suppressed luteinizing hormone secretion in rats and 2 and 3 mg/kg resulted in a deterioation of male sexual performance. A new chapter in marijuana research was opened in 1964 with the identification of delta 9-tetrahydrocannabinol as the active ingredient. Antiedema, analgesic, antipyretic, antiinflammatory, antifertility, antiepileptic, anticonvulsant, antihypertensive, cardiotonic, pulmonary, and antidepressant effects along with potentiation of barbiturates and analgesics are reviewed leading one to the conclusion that marijuana is “a drug for all reasons”. During the past decade many investigators have pursued the possibility of modification of the delta 9 structure to delineate activities. 1 compound, Abbott 40656, SP106, a water-soluble benzopyran derivative is presently under Phase 1 clinical evaluation as a sedative-hypnotic.”

http://www.ncbi.nlm.nih.gov/pubmed/12307093/

Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects.

“Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4′-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27416026

Prohedonic Effect of Cannabidiol in a Rat Model of Depression.

“Accumulating evidence suggests that cannabidiol (CBD) may be an effective and safe anxiolytic agent and potentially also an antidepressant.

 These findings extend the limited knowledge on the antidepressant effect of CBD, now shown for the first time in a genetic animal model of depression. These results suggest that CBD may be beneficial for the treatment of clinical depression and other states with prominent anhedonia.”

http://www.ncbi.nlm.nih.gov/pubmed/27010632

http://www.thctotalhealthcare.com/category/depression-2/

Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex – possible involvement of 5-HT1A and CB1 receptors.

“Systemic administration of Cannabidiol (CBD), the main non-psychotomimetic constituent of Cannabis sativa, induces antidepressant-like effects.

The mechanism of action of CBD is thought to involve the activation of 5-HT1A receptors and the modulation of endocannabinoid levels with subsequent CB1 activation…

Administration of CBD into the vmPFC induces antidepressant-like effects possibly through indirect activation of CB1 and 5-HT1A receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/26801828

http://www.thctotalhealthcare.com/category/depression-2/

Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: Role of 5-HT1A receptors.

“Cannabidiol (CBD), the main non-psychotomimetic component of marihuana…

…we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression…

In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism.”

http://www.ncbi.nlm.nih.gov/pubmed/26711860

Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251 after physical stress in mice.

“Cannabinoid inverse agonists possess antidepressant-like properties…

Numerous studies reported the interaction between opioid and cannabinoid pathways.

In this study, we used acute foot-shock stress in mice to investigate the involvement of opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251.

In conclusion, the present study for the first time revealed the possible role of opioid signaling in the antidepressant-like properties of AM-251 in foot-shock stress model. “

http://www.ncbi.nlm.nih.gov/pubmed/26609670