Cannabidiol reduced frequency of convulsive seizures in drug resistant Dravet syndrome.

BMJ Journals

“Study design

Design: Multinational double-blinded placebo-controlled trial. Patients randomised in 1:1 ratio to receive cannabidiol or placebo, in addition to stable antiepileptic treatment regime.

Study question

Setting: Twenty-three centres in Europe and USA.

 Patients: Patients aged 2 years to 18 years with established diagnosis of Dravet syndrome having at least four convulsive seizures during the 28-day baseline period despite regular antiepileptic medication.

Intervention: Adjunctive cannabidiol or placebo oral solution at 20 mg per kilogram of body weight per day.

Primary outcome: Percentage change in median frequency of convulsive seizures per month.

Follow-up period: Outcome measured over a 14-week treatment period in comparison to a 4-week baseline period.

Patient follow-up: One hundred and eight (90%) completed the trial: 85% (52/61) in the cannabidiol group and …”

http://ep.bmj.com/content/early/2017/09/22/archdischild-2017-313700

An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol.

Image result for frontiers in pharmacology

“Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.”  https://www.ncbi.nlm.nih.gov/pubmed/28701957

Neurological aspects of medical use of cannabidiol.

Image result for CNS Neurol Disord Drug Targets.

“Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions. CBD neuroprotection is due to its antioxidant and antiinflammatory activi-ties and the modulation of a large number of brain biological targets (receptors, channels) involved in the development and maintenance of neurodegenerative diseases.

OBJECTIVE:

Aim of the present review was to describe the state of art about the pre-clinical research, the potential use and, when existing, the clinical evidence related to CBD in the neurological field.

RESULTS:

Laboratory and clinical studies on the potential role of CBD in Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), Huntington’s disease (HD), amyotrophic lateral sclerosis ALS), cerebral ischemia, were examined.

CONCLUSIONS:

Pre-clinical evidence largely shows that CBD can produce beneficial effects in AD, PD and MS patients, but its employment for these disorders needs further confirmation from well designed clinical studies. CBD pre-clinical demonstration of antiepileptic activity is supported by recent clinical studies in human epileptic subjects resistant to standard antiepileptic drugs showing its potential use in children and young adults affected by refractory epilepsy. Evidence for use of CBD in PD is still not supported by sufficient data whereas only a few studies including a small number of patients are available.”

https://www.ncbi.nlm.nih.gov/pubmed/28412918

An Australian nationwide survey on medicinal cannabis use for epilepsy: History of antiepileptic drug treatment predicts medicinal cannabis use.

Image result for epilepsy & behavior

“Epilepsy Action Australia conducted an Australian nationwide online survey seeking opinions on and experiences with the use of cannabis-based products for the treatment of epilepsy. The survey was promoted via the Epilepsy Action Australia’s main website, on their Facebook page, and by word of mouth. The survey consisted of 39 questions assessing demographics, clinical factors, including diagnosis and seizure types, and experiences with and opinions towards cannabis use in epilepsy. A total of 976 responses met the inclusion criteria.

Results show that 15% of adults with epilepsy and 13% of parents/guardians of children with epilepsy were currently using, or had previously used, cannabis products to treat epilepsy. Of those with a history of cannabis product use, 90% of adults and 71% of parents reported success in reducing seizure frequency after commencing cannabis products. The main reasons for medicinal cannabis use were to manage treatment-resistant epilepsy and to obtain a more favorable side-effect profile compared to standard antiepileptic drugs.

The number of past antiepileptic drugs tried was a significant predictor of medicinal cannabis use in both adults and children with epilepsy. Fifty-six percent of adults with epilepsy and 62% of parents/guardians of children with epilepsy expressed willingness to participate in clinical trials of cannabinoids. This survey provides insight into the use of cannabis products for epilepsy, in particular some of the likely factors influencing use, as well as novel insights into the experiences of and attitudes towards medicinal cannabis in people with epilepsy in the Australian community.”

https://www.ncbi.nlm.nih.gov/pubmed/28238865

Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2′-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice.

Image result for Eur J Pharmacol.

“We evaluated the effects of ACEA (selective cannabinoid (CB)1 receptor agonist), WIN 55,212-2 mesylate (WIN; non-selective CB1and CB2 receptor agonist) and N-palmitoylethanolamine (PEA; an endogenous fatty acid of ethanolamide) in DBA/2 mice, a genetic model of reflex audiogenic epilepsy.

PEA, ACEA or WIN intraperitoneal (i.p.) administration decreased the severity of tonic-clonic seizures.

PEA has anticonvulsant features in DBA/2 mice mainly through PPAR-α and likely indirectly on CB1 receptors, whereas ACEA and WIN act through CB1 receptors.

In conclusion, PEA, ACEA and WIN show anticonvulsant effects in DBA/2 mice and potentiate the effects several AEDs suggesting a possible therapeutic relevance of these drugs and their mechanisms of action.”

https://www.ncbi.nlm.nih.gov/pubmed/27663280

Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex.

Image result for Epilepsia.

“Tuberous sclerosis complex (TSC) is an autosomal-dominant genetic disorder with highly variable expression.

The most common neurologic manifestation of TSC is epilepsy, which affects approximately 85% of patients, 63% of whom develop treatment-resistant epilepsy.

Herein, we evaluate the efficacy, safety, and tolerability of cannabidiol (CBD), a nonpsychoactive compound derived from the marijuana plant, as an adjunct to current antiepileptic drugs in patients with refractory seizures in the setting of TSC.

Although double-blind, placebo-controlled trials are still necessary, these findings suggest that cannabidiol may be an effective and well-tolerated treatment option for patients with refractory seizures in TSC.”

https://www.ncbi.nlm.nih.gov/pubmed/27696387

Cannabidiol as a Potential Treatment for Febrile Infection-Related Epilepsy Syndrome (FIRES) in the Acute and Chronic Phases.

Image result for journal of child neurology

“Febrile infection-related epilepsy syndrome (FIRES) is a devastating epilepsy affecting normal children after a febrile illness. FIRES presents with an acute phase with super-refractory status epilepticus and all patients progress to a chronic phase with persistent refractory epilepsy. The typical outcome is severe encephalopathy or death. The authors present 7 children from 5 centers with FIRES who had not responded to antiepileptic drugs or other therapies who were given cannabadiol (Epidiolex, GW Pharma) on emergency or expanded investigational protocols in either the acute or chronic phase of illness. After starting cannabidiol, 6 of 7 patients’ seizures improved in frequency and duration. One patient died due to multiorgan failure secondary to isoflourane. An average of 4 antiepileptic drugs were weaned. Currently 5 subjects are ambulatory, 1 walks with assistance, and 4 are verbal. While this is an open-label case series, the authors add cannabidiol as a possible treatment for FIRES.”

http://www.ncbi.nlm.nih.gov/pubmed/27655472

From cannabis to cannabidiol to treat epilepsy, where are we?

Image result for Curr Pharm Des.

“Several antiepileptic drugs (AEDs), about 25, are currently clinically available for the treatment of patients with epilepsy. Despite this armamentarium and the many recently introduced AEDs, no major advances have been achieved considering the number of drug resistant patients, while many benefits have been indeed obtained for other clinical outcomes (e.g. better tolerability, less interactions).

Cannabinoids have long been studied for their potential therapeutical use and more recently phytocannabinoids have been considered a valuable tool for the treatment of several neurological disorders including epilepsy.

Among this wide class, the most studied is cannabidiol (CBD) considering its lack of psychotropic effects and its anticonvulsant properties.

Several preclinical studies have tried to understand the mechanism of action of CBD, which still remains largely not understood.

CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures; beneficial effects were reported also in animal models of epileptogenesis and chronic models of epilepsy,

There is indeed sufficient supporting data for clinical development and important antiepileptic effects and the currently ongoing clinical studies will permit the real usefulness of CBD and possibly other cannabinoids.

Undoubtedly, several issues also need to be addressed in the next future (e.g. better pharmacokinetic profiling). Finally, shading light on the mechanism of action and the study of other cannabinoids might represent an advantage for future developments.”

http://www.ncbi.nlm.nih.gov/pubmed/27587196

The cannabinoids: therapeutic potentials.

 

“A review of the therapeutic potentials of the cannabinoids is presented. With respect to the antifertility aspects of cannabinoids, 2 mg delta 9-THC suppressed luteinizing hormone secretion in rats and 2 and 3 mg/kg resulted in a deterioation of male sexual performance. A new chapter in marijuana research was opened in 1964 with the identification of delta 9-tetrahydrocannabinol as the active ingredient. Antiedema, analgesic, antipyretic, antiinflammatory, antifertility, antiepileptic, anticonvulsant, antihypertensive, cardiotonic, pulmonary, and antidepressant effects along with potentiation of barbiturates and analgesics are reviewed leading one to the conclusion that marijuana is “a drug for all reasons”. During the past decade many investigators have pursued the possibility of modification of the delta 9 structure to delineate activities. 1 compound, Abbott 40656, SP106, a water-soluble benzopyran derivative is presently under Phase 1 clinical evaluation as a sedative-hypnotic.”

http://www.ncbi.nlm.nih.gov/pubmed/12307093/

Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.

“There is growing pressure for states and the federal government to legalize the use of cannabis products for medical purposes in the United States.

Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted Δ9 -tetrahydrocannabinol (Δ9 -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader.

The objectives of this review are to provide an overview of the pharmacology and toxicology of CBD; to summarize some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and to assess the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States.

Unlike Δ9 -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors (CB1 and CB2 ), whose activation results in the psychotropic effects characteristic of Δ9 -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use.

CBD exhibits antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties.

In combination with Δ9 -THC, CBD has received regulatory approvals in several European countries and is currently under study in U.S. Food and Drug Administration-registered trials in the United States.

A number of states have passed legislation to allow for the use of CBD-rich, limited Δ9 -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications.

Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.”

http://www.ncbi.nlm.nih.gov/pubmed/27285147