Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis.

“Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment.

Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis.

CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases.

Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group.

Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

For multifactorial chronic diseases, such as fibrosis, the conventional pharmacological approach based on the “one-disease/one-target/one-drug” paradigm limits therapeutic efficacy and could be improved by simultaneously hitting multiple therapeutic targets.

One such target is the endocannabinoid/cannabinoid-1 receptor (endocannabinoid/CB1R) system.

The dual targeting of peripheral CB1R and iNOS demonstrated here exemplifies the therapeutic gain obtained by simultaneously hitting more than one molecule, which could then engage distinct as well as convergent cellular pathways. The advantage of such an approach is highlighted by emerging experience with recently developed antifibrotic medications, which indicates that targeting a single pathway has limited effect on fibrotic diseases .

Thus, the approach illustrated by the present study has promise as an effective antifibrotic strategy.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979564/

Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

“Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment.

Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects.

Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases.

Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group.

Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

Regarding the pharmacodynamics of the hybrid CB1R/iNOS inhibitor, two important principles have emerged from efforts to develop effective antifibrotic therapies. First, antifibrotic treatment strategies could aim to control the primary disease, to inhibit fibrogenic gene expression and signaling, to promote molecular mechanisms involved in fibrosis regression, or a combination of these. Second, with multiple molecular mechanisms and signaling pathways involved in fibrosis, targeting more than one could increase antifibrotic efficacy, and the hybrid CB1R/iNOS inhibitor embodies optimal characteristics on both accounts.

As to the first principle, both the endocannabinoid/CB1R system and iNOS are ideal targets, as they are known to be involved directly in the fibrotic process and also in the conditions predisposing to liver fibrosis, as detailed in the Introduction. An emerging major predisposing factor to liver fibrosis is nonalcoholic fatty liver disease, and CB1R blockade has proven effective in mitigating obesity-related hepatic steatosis in both rodent models and humans. The other two major predisposing factors, alcoholic fatty liver disease and viral hepatitis, also involve increased CB1R activity. Hepatic CB1R expression is induced either by chronic ethanol intake or the hepatitis C virus, and CB1R blockade mitigates alcohol-induced steatosis and inhibits hepatitis C virus production.

The dual targeting of peripheral CB1R and iNOS demonstrated here exemplifies the therapeutic gain obtained by simultaneously hitting more than one molecule, which could then engage distinct as well as convergent cellular pathways. The advantage of such an approach is highlighted by emerging experience with recently developed antifibrotic medications, which indicates that targeting a single pathway has limited effect on fibrotic diseases.

Thus, the approach illustrated by the present study has promise as an effective antifibrotic strategy.”

http://insight.jci.org/articles/view/87336

Cannabinoids, inflammation, and fibrosis.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (CT-3, AJA; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

http://www.ncbi.nlm.nih.gov/pubmed/27435265

CB2R orchestrates fibrogenesis through regulation of inflammatory response during the repair of skeletal muscle contusion.

“Skeletal muscle injuries repair typically is an overlapping event between inflammation and tissue repair.

Our previous study has demonstrated that activation of cannabinoid receptor type 2 (CB2R) alleviates fibrosis in the repair of rat skeletal muscle contusion. Meanwhile, accumulated data show that CB2R stimulation exerts anti-inflammatory property in sepsis and cystitis…

In this study, we used selective agonist or antagonist of CB2R to observe the role of CB2R on inflammation and fibrogenesis during the repair of contused skeletal muscles in rats…

Our study demonstrated that CB2R orchestrates fibrogenesis through regulation of inflammatory response during the repair of skeletal muscle contusion.”

http://www.ncbi.nlm.nih.gov/pubmed/26097533

 

Cannabinoid type 1 receptor antagonism delays ascites formation in rats with cirrhosis.

  “Endocannabinoids contribute to hemodynamic abnormalities of cirrhosis. Whether this favors renal sodium retention and ascites formation is unknown. We determined whether cannabinoid type 1 receptor antagonism prevents sodium retention and ascites formation in preascitic cirrhotic rats.”

 

“Cannabinoid type 1 receptor antagonism delays ascites formation in rats with cirrhosis.”

 

“Rimonabant improves sodium balance and delays decompensation in preascitic cirrhosis. This is achieved though an improvement in systemic and renal hemodynamics, although it cannot be excluded that the antifibrotic effect of the drug may play a role.”

http://www.ncbi.nlm.nih.gov/pubmed/19208344

Endocannabinoids and Liver Disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis

“Plant-derived cannabinoids such as delta-9-tetrahydrocannabinol (THC) have been used for medicinal purposes for thousands of years. Two G protein-coupled receptors termed CB1 and CB2 were identified in the early 1990s as receptors for cannabinoids…”

“Hepatic fibrosis is the response of the liver to chronic injury and is associated with portal hypertension, progression to hepatic cirrhosis, liver failure, and high incidence of hepatocellular carcinoma. On a molecular level, a large number of signaling pathways have been shown to contribute to the activation of fibrogenic cell types and the subsequent accumulation of extracellular matrix in the liver. Recent evidence suggests that the endocannabinoid system is an important part of this complex signaling network. In the injured liver, the endocannabinoid system is upregulated both at the level of endocannabinoids and at the endocannabinoid receptors CB1 and CB2. The hepatic endocannabinoid system mediates both pro- and antifibrogenic effects by activating distinct signaling pathways that differentially affect proliferation and death of fibrogenic cell types. Here we will summarize current findings on the role of the hepatic endocannabinoid system in liver fibrosis and discuss emerging options for its therapeutic exploitation.”

“There is overwhelming evidence that the endocannabinoid system plays a major role in the pathophysiology of chronic liver injury and wound healing responses and that modulation of the endocannabinoid system may be exploited for the treatment of liver fibrosis. Among all candidates, CB1 represents the most promising target for antifibrotic therapies. In addition to the antifibrogenic effects of CB1 blockade, one can expect positive effects on other complications such as portal hypertension, ascites formation, hepatic encephalopathy, and cardiomyopathy. Moreover, CB1 antagonism appears to have beneficial effects on hepatic steatosis…”

http://ajpgi.physiology.org/content/294/2/G357.long

Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis.

BMJ Journals

“Cannabinoids modulate fibrogenesis in scleroderma.

Ajulemic acid (AjA) is a non-psychoactive synthetic analogue of tetrahydrocannabinol that can bind the peroxisome proliferator-activated receptor-γ (PPAR-γ). Recent evidence suggests a key role for PPAR-γ in fibrogenesis. To determine whether AjA can modulate fibrogenesis in murine models of scleroderma.”

“RESULTS:

AjA significantly prevented experimental bleomycin-induced dermal fibrosis and modestly reduced its progression when started 3 weeks into the disease. AjA strongly reduced collagen neosynthesis by scleroderma fibroblasts in vitro, an action which was reversed completely by co-treatment with a selective PPAR-γ antagonist.”

“CONCLUSIONS:

AjA prevents progression of fibrosis in vivo and inhibits fibrogenesis in vitro by stimulating PPAR-γ signalling. Since therapeutic doses of AjA are well tolerated in humans, it is suggested that AjA as an interesting molecule targeting fibrosis in patients with scleroderma.”

http://www.ncbi.nlm.nih.gov/pubmed/22492781

http://ard.bmj.com/content/71/9/1545

Antiproliferative Effects of Cannabinoid Agonists on Deep Infiltrating Endometriosis

“Deep infiltrating endometriosis (DIE) is characterized by chronic pain, hyperproliferation of endometriotic cells and fibrosis. Since cannabinoids are endowed with antiproliferative and antifibrotic properties, in addition to their psychogenic and analgesic effects, cannabinoid agonists have been evaluated in DIE both in vitro and in vivo. The in vitro effects of the cannabinoid agonist WIN 55212-2 were evaluated on primary endometriotic and endometrial stromal and epithelial cell lines extracted from patients with or without DIE. Cell proliferation was determined by thymidine incorporation and production of reactive oxygen species by spectrofluorometry. ERK and Akt pathways were studied by immunoblotting. Immunoblotting of α-smooth muscle actin was studied as evidence of myofibroblastic transformation. The in vivo effects of WIN 55212-2 were evaluated on Nude mice implanted with human deep infiltrating endometriotic nodules. The in vitro treatment of stromal endometriotic cells by WIN 55212-2 decreased cell proliferation, reactive oxygen species production, and α-smooth muscle actin expression. The decrease in cell proliferation induced by WIN 55212-2 was not associated with a decrease in ERK activation, but was associated with the inhibition of Akt activation. WIN 55212-2 abrogated the growth of endometriotic tissue implanted in Nude mice. Cannabinoid agonists exert anti-proliferative effects on stromal endometriotic cells linked to the inhibition of the Akt pathway. These beneficial effects of cannabinoid agonists on DIE have been confirmed in vivo.”

“The cannabinoids are well known for their psychogenic effects and their role in inflammation and immunity. They are also endowed with properties that can be used in the control of three major aspects of DIE: hyperproliferation, fibrosis, and chronic pain. Because of their implication in proliferation, apoptosis, and angiogenesis, the cannabinoids control cell growth. Their antiproliferative effects result from the inhibition of growth factors and the deregulation of such signaling pathways as Ras-Raf-MKKK1-ERK1/2, PI3K-Akt/PKB-mTOR and c-Jun N-terminal kinase-MAPK. These mechanisms have suggested new targets in cancer treatment and also in endometriosis, since endometriotic cells have a hyperproliferative phenotype and pro-angiogenic properties. In addition, several experimental studies have reported an antifibrotic role of cannabinoid agonists. If such antifibrotic effect of cannabinoid agonists could be demonstrated in DIE it would allow a less extensive surgery. Finally, cannabinoids have analgesic properties and have been used for a long time in treating chronic pain.

“Therefore, we have evaluated the effects of cannabinoid agonists in vitro on cells extracted from biopsies of deep infiltrating endometriosis and in vivo on a mouse model of endometriosis. We conclude from our data that cannabinoid agonists represent a promising approach in the treatment of DIE.”

“In conclusion, WIN 55212-2 has in vitro antiproliferative and antifibrotic effects in deep infiltrating endometriotic cells. The antiproliferative effect is linked to the inactivation of the Akt pathway. The effectiveness of WIN 55212-2 in vitro, confirmed in vivo in a mouse model of DIE, suggests that the cannabinoid agonists represent a promising therapeutic approach in the treatment of DIE.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993285/