Effect of a synthetic cannabinoid agonist on the proliferation and invasion of gastric cancer cells.

“Although cannabinoids are associated with antineoplastic activity in a number of cancer cell types, the effect in gastric cancer cells has not been clarified. In the present study, we investigated the effects of a cannabinoid agonist on gastric cancer cell proliferation and invasion.

The cannabinoid agonist WIN 55,212-2 inhibited the proliferation of human gastric cancer cells in a dose-dependent manner and that this effect was mediated partially by the CB(1) receptor. We also found that WIN 55,212-2 induced apoptosis and down-regulation of the phospho-AKT expression in human gastric cancer cells. Furthermore, WIN 55,212-2 treatment inhibited the invasion of gastric cancer cells, and down-regulated the expression of MMP-2 and VEGF-A through the cannabinoid receptors.

Our results open the possibilities in using cannabinoids as a new gastric cancer therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/20336665

Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism

“Pancreatic adenocarcinoma is one of the most aggressive and devastating human malignancies with a death-to-incidence ratio of 0.99. Although it represents only 2–3% of all cancers, pancreatic adenocarcinoma is the fourth cause of death by tumors…

In recent years, there has been increasing interest in cannabinoids as therapeutic drugs for their antineoplastic, anticachectic, and analgesic potential. Growth inhibitory activities of cannabinoids have been demonstrated for various malignancies, including brain, breast, prostate, colorectal, skin and, recently, pancreatic cancer…

In the present study, we have demonstrated that the combination between the standard chemotherapy agent GEM and cannabinoids synergistically inhibited pancreatic adenocarcinoma cell growth by a ROS-dependent autophagic cell death.

These findings support a key role of the ROS-dependent activation of an autophagic program in the synergistic growth inhibition induced by GEM/cannabinoid combination in human pancreatic cancer cells.

GEM and cannabinoids strongly inhibited growth of human pancreatic adenocarcinoma cells in vivo.”

Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122066/

Antitumor Effects of Cannabidiol, a Nonpsychoactive Cannabinoid, on Human Glioma Cell Lines

“Marijuana and its derivatives have been used in medicine for many centuries, and currently there is a renewed interest in the study of the therapeutic effects of cannabinoids…”

“Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines…”

“…the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.”

“In conclusion, a cannabinoid-based therapeutic strategy for neural diseases devoid of undesired psychotropic side effects could find in CBD a valuable compound in cancer therapies along with the perspective of evaluating a synergistic effect with other cannabinoid molecules and/or with other chemotherapeutic agents as well as with radiotherapy. Whatever the precise mechanism underlying the CBD effects, the present results suggest a possible application of CBD as a promising, nonpsychoactive, antineoplastic agent.”

http://jpet.aspetjournals.org/content/308/3/838.full

Antineoplastic activity of cannabinoids.

   “Lewis lung adenocarcinoma growth was retarded by the oral administration of delta9-tetrahydrocannabinol (delta9-THC), delta8-tetrahydrocannabinol (delta8-THC), and cannabinol (CBN), but not cannabidiol (CBD)… CBD was active only in high concentrations.”

http://www.ncbi.nlm.nih.gov/pubmed/1159836

Pharmacology of cannabinoids.

Abstract

“Dronabinol (Delta 9-tetrahydocannabinol, THC), the main source of the pharmacological effects caused by the use of cannabis, is an agonist to both the CB1 and the CB2 subtype of cannabinoid receptors. It is available on prescription in several countries. The non-psychotropic cannabidiol (CBD), some analogues of natural cannabinoids and their metabolites, antagonists at the cannabinoid receptors and modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues including spleen, leukocytes; reproductive, urinary and gastrointestinal tracts; endocrine glands, arteries and heart. Five endogenous cannabinoids have been detected so far, of whom anandamide and 2-arachidonylglycerol are best characterized. There is evidence that besides the two cannabinoid receptor subtypes cloned so far additional cannabinoid receptor subtypes and vanilloid receptors are involved in the complex physiological functions of the cannabinoid system that include motor coordination, memory procession, control of appetite, pain modulation and neuroprotection. Strategies to modulate their activity include inhibition of re-uptake into cells and inhibition of their degradation to increase concentration and duration of action. Properties of cannabinoids that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, anti-inflammation, anti-allergic effects, sedation, improvement of mood, stimulation of appetite, anti-emesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects.”

http://www.ncbi.nlm.nih.gov/pubmed/15159677

Cannabinoids and cancer.

“Marijuana has been used in medicine for millennia, but it was not until 1964 that delta9-tetrahydrocannabinol (delta9-THC), its major psychoactive component, was isolated in pure form and its structure was elucidated. Shortly thereafter it was synthesized and became readily available. However, it took another decade until the first report on its antineoplastic activity appeared. In 1975, Munson discovered that cannabinoids suppress Lewis lung carcinoma cell growth. The mechanism of this action was shown to be inhibition of DNA synthesis. Antiproliferative action on some other cancer cells was also found. In spite of the promising results from these early studies, further investigations in this area were not reported until a few years ago, when almost simultaneously two groups initiated research on the antiproliferative effects of cannabinoids on cancer cells: Di Marzo’s group found that cannabinoids inhibit breast cancer cell proliferation, and Guzman’s group found that cannabinoids inhibit the growth of C6 glioma cell. Other groups also started work in this field, and today, a wide array of cancer cell lines that are affected is known, and some mechanisms involved have been elucidated.”

http://www.ncbi.nlm.nih.gov/pubmed/16250836

Antitumor Activity of Plant Cannabinoids with Emphasis on the Effect of Cannabidiol on Human Breast Carcinoma

“Delta(9)-Tetrahydrocannabinol (THC) exhibits antitumor effects on various cancer cell types, but its use in chemotherapy is limited by its psychotropic activity. We investigated the antitumor activities of other plant cannabinoids, i.e., cannabidiol, cannabigerol, cannabichromene, cannabidiol acid and THC acid, and assessed whether there is any advantage in using Cannabis extracts (enriched in either cannabidiol or THC) over pure cannabinoids. Results obtained in a panel of tumor cell lines clearly indicate that, of the five natural compounds tested, cannabidiol is the most potent inhibitor of cancer cell growth (IC(50) between 6.0 and 10.6 microM), with significantly lower potency in noncancer cells. The cannabidiol-rich extract was equipotent to cannabidiol, whereas cannabigerol and cannabichromene followed in the rank of potency. Both cannabidiol and the cannabidiol-rich extract inhibited the growth of xenograft tumors obtained by s.c. injection into athymic mice of human MDA-MB-231 breast carcinoma or rat v-K-ras-transformed thyroid epithelial cells and reduced lung metastases deriving from intrapaw injection of MDA-MB-231 cells. Judging from several experiments on its possible cellular and molecular mechanisms of action, we propose that cannabidiol lacks a unique mode of action in the cell lines investigated. At least for MDA-MB-231 cells, however, our experiments indicate that cannabidiol effect is due to its capability of inducing apoptosis via: direct or indirect activation of cannabinoid CB(2) and vanilloid transient receptor potential vanilloid type-1 receptors and cannabinoid/vanilloid receptor-independent elevation of intracellular Ca(2+) and reactive oxygen species. Our data support the further testing of cannabidiol and cannabidiol-rich extracts for the potential treatment of cancer.”

In conclusion, our data indicate that cannabidiol, and possibly Cannabis extracts enriched in this natural cannabinoid, represent a promising nonpsychoactive antineoplastic strategy. In particular, for a highly malignant human breast carcinoma cell line, we have shown here that cannabidiol and a cannabidiol-rich extract counteract cell growth both in vivo and in vitro as well as tumor metastasis in vivo. Cannabidiol exerts its effects on these cells through a combination of mechanisms that include either direct or indirect activation of CB2 and TRPV1 receptors and induction of oxidative stress, all contributing to induce apoptosis. Additional investigations are required to understand the mechanism of the growth-inhibitory action of cannabidiol in the other cancer cell lines studied here.”

http://jpet.aspetjournals.org/content/318/3/1375.long

Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy

“Cannabidiol (CBD), a major nonpsychoactive constituent of cannabis, is considered an antineoplastic agent on the basis of its in vitro and in vivo activity against tumor cells. However, the exact molecular mechanism through which CBD mediates this activity is yet to be elucidated. Here, we have shown CBD-induced cell death of breast cancer cells, independent of cannabinoid and vallinoid receptor activation. Electron microscopy revealed morphologies consistent with the coexistence of autophagy and apoptosis. Western blot analysis confirmed these findings. We showed that CBD induces endoplasmic reticulum stress and, subsequently, inhibits AKT and mTOR signaling as shown by decreased levels of phosphorylated mTOR and 4EBP1, and cyclin D1. Analyzing further the cross-talk between the autophagic and apoptotic signaling pathways, we found that beclin1 plays a central role in the induction of CBD-mediated apoptosis in MDA-MB-231 breast cancer cells. Although CBD enhances the interaction between beclin1 and Vps34, it inhibits the association between beclin1 and Bcl-2. In addition, we showed that CBD reduces mitochondrial membrane potential, triggers the translocation of BID to the mitochondria, the release of cytochrome c to the cytosol, and, ultimately, the activation of the intrinsic apoptotic pathway in breast cancer cells. CBD increased the generation of reactive oxygen species (ROS), and ROS inhibition blocked the induction of apoptosis and autophagy. Our study revealed an intricate interplay between apoptosis and autophagy in CBD-treated breast cancer cells and highlighted the value of continued investigation into the potential use of CBD as an antineoplastic agent.”

http://mct.aacrjournals.org/content/10/7/1161.long