The neuroprotection of cannabidiol against MPP+-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson’s disease.

“Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases.

Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved.

We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP+ toxicity in PC12 cells…

This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD.

Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP+, a neurotoxin relevant to Parkinson’s disease.”

http://www.ncbi.nlm.nih.gov/pubmed/26556726

Role of the Endocannabinoid System in Diabetes and Diabetic Complications.

“Increasing evidence suggests that an overactive endocannabinoid system (ECS) may contribute to the development of diabetes by promoting energy intake and storage, impairing both glucose and lipid metabolism, and by exerting pro-apoptotic effects in pancreatic β cells, and by facilitating inflammation in pancreatic islets.

Furthermore, hyperglycemia associated with diabetes has also been implicated in triggering perturbations of the ECS amplifying the above mentioned pathological processes, eventually culminating in a vicious circle.

Compelling evidence from preclinical studies indicates that the ECS also influences diabetes-induced oxidative stress, inflammation, fibrosis, and subsequent tissue injury in target organs for diabetic complications.

In this review, we provide an update on the contribution of the ECS to the pathogenesis of diabetes and diabetic microvascular (retinopathy, nephropathy, and neuropathy) and cardiovascular complications. The therapeutic potential of targeting the ECS is also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/26076890#

http://www.thctotalhealthcare.com/category/diabetes/

Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes.

“Cannabinoids are known to possess therapeutic properties including inhibition of oxidation, NMDA receptor-activation, and inflammation.

The present study evaluates the ability of CBD to reduce oxidative stress, preserve BRB function, and prevent neural cell death in experimental diabetes…

These results demonstrate that CBD treatment reduces neurotoxicity, inflammation, and BRB breakdown in diabetic animals through activities that may involve inhibition of p38 MAP kinase.

The nonpsychotropic CBD is a promising candidate for anti-inflammatory and neuroprotective therapeutics.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592672/

http://www.thctotalhealthcare.com/category/diabetes/

A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats.

Logo of nutrients

“This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR)…

The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity.”

http://www.ncbi.nlm.nih.gov/pubmed/25493943

“Cannabis sativa L., also commonly called industrial hemp seed, is historically an important source of food, fibre, dietary oil and medicine; the seed contains about 30% oil and 25% protein…

Proteins from both plant and animal sources, including those of hemp seed, have been isolated and recognized as essential sources of bioactive peptides capable of exerting various in vitro and in vivo activities, such as antioxidant, antihypertensive, antimicrobial, opioid, antithrombotic, hypocholesterolemic, appetite-reducing, mineral-binding, immunomodulatory and cytomodulatory…

HMH may serve as an important ingredient to formulate antioxidant diets with potential therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276990/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Protective effects of Delta(9)-tetrahydrocannabinol against N-methyl-d-aspartate-induced AF5 cell death.

Image result for delta-9-tetrahydrocannabinol

“One of the most promising potential medical applications of cannabinoids involves their ability to protect cells from a variety of toxic events.

Cannabinoids have been reported to protect neurons from death…

Cannabinoids, such as the pharmacologically active component of marijuana (-)Δ9-tetrahydrocannabinol (THC)…

The neuroprotective effects of Δ9-tetrahydrocannabinol (THC) were examined…

Protective effects of Delta(9)-tetrahydrocannabinol… THC may function as an antioxidant to increase cell survival… 

THC can produce receptor-independent neuroprotective or cellular protective effects at micromolar concentrations as a result of its antioxidant properties…

In conclusion, THC produces a potent neuroprotective effect…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1824211/

4-hydroxy-3-methoxy-acetophenone-mediated long-lasting memory recovery, hippocampal neuroprotection, and reduction of glial cell activation after transient global cerebral ischemia in rats.

“4-Hydroxy-3-methoxy-acetophenone (apocynin) is a naturally occurring methoxy-substitute catechol that is isolated from the roots of Apocynin cannabinum (Canadian hemp) and Picrorhiza kurroa (Scrophulariaceae).

It has been previously shown to have antioxidant and neuroprotective properties in several models of neurodegenerative disease, including cerebral ischemia.

The present study investigates the effects of apocynin on transient global cerebral ischemia (TGCI)-induced retrograde memory deficits in rats.

The protective effects of apocynin on neurodegeneration and the glial response to TGCI are also evaluated.

The present results confirm that TGCI causes memory impairment in the AvRM and that apocynin prevents these memory deficits and attenuates hippocampal neuronal death in a sustained way.

These findings support the potential role of apocynin in preventing neurodegeneration and cognitive impairments following TGCI in rats.

The long-term protective effects of apocynin may involve inhibition of the glial response.”

http://www.ncbi.nlm.nih.gov/pubmed/25702923

Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration.

“Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content…

Cannabidiol (CBD) is the major nonpsychotropic phytocannabinoid of Cannabis sativa (up to 40% of Cannabis extracts). Contrary to most cannabinoids, CBD does not produce psychotomimetic or cognitive effects. Interesting, in the last years it has been suggest that CBD produces a plethora of others pharmacological effects, including antioxidant, neuroprotective, anti-proliferative, anti-anxiety, hypnotic and antiepileptic, anti-nausea, anti-ischemic, anti-hyperalgesic, and anti-inflammatory…

The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses…

 Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.

 In summary our study revealed anti-degenerative effects of intradiscal microinjection of CBD 120 nmol. CBD represents one of the most promising candidates present in the Cannabis sativa plant for clinical use due to its remarkable lack of cognitive or psychotomimetic actions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269422/

http://www.thctotalhealthcare.com/category/spinal-cord-injury/

Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis.

“Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells, and cell death.

Cannabidiol is a non-psychotropic constituent of marijuana, which is well-tolerated in humans, with antioxidant, anti-inflammatory, and recently discovered antitumor properties.

We aimed to explore the effects of cannabidiol in a well-established mouse model of DOX-induced cardiomyopathy…

Treatment with cannabidiol markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. Cannabidiol also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis.

These data suggest that cannabidiol may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.”

http://www.ncbi.nlm.nih.gov/pubmed/25569804

Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy

“Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis.

We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis.

Cannabidiol attenuates alcohol-mediated oxidative stress.

Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway…

Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol.

Cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms.

In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.”

http://www.sciencedirect.com/science/article/pii/S0891584913015670

Comparison of Cannabidiol, Antioxidants, and Diuretics in Reversing Binge Ethanol-Induced Neurotoxicity

“Alcohol is the world’s most widely used psychoactive drug, but chronic, excessive alcohol consumption leads to permanent organ damage or death..

In the current study, we use a rat model of binge alcohol consumption to determine the potential of cannabidiol (CBD) as a neuroprotectant against ethanol-induced neurotoxicity…

…we evaluated CBD as a neuroprotectant in a rat binge ethanol model.

When administered concurrently with binge ethanol exposure, CBD protected against hippocampal and entorhinal cortical neurodegeneration in a dose-dependent manner.

This study provides the first demonstration of CBD as an in vivo neuroprotectant…

CBD protects against binge alcohol-induced damage.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183207/