The pro-apoptosis effects of Echinacea purpurea and Cannabis sativa extracts in human lung cancer cells through caspase-dependent pathway

 Logo of bmccmt“Considering the advantages of using medicinal herbs as supplementary treatments to sensitize conventional anti-cancer drugs, studying functional mechanisms and regulatory effects of Echinacea purpurea (as a non-cannabinoid plant) Image result for echinacea purpurea

and Cannabis sativa (as a cannabinoid plant) are timely and required.Image result for cannabis sativa

The potential effects of such herbs on lung cancer cell growth, apoptosis, cell cycle distribution, cellular reactive oxygen species (ROS) level, caspase activity and their cannabinomimetic properties on the CB2 receptor are addressed in the current study.

Results: Echinacea purpurea (EP) root extract induced a considerable decrease in A549 viable cells, showing a time and dose-dependent response. The cell toxicity of EP was accompanied by induction of early apoptosis and cell accumulation at the sub G1 phase of the cell cycle. The elevation of cellular ROS level and caspase 3 activity indicate ROS-induced caspase-dependent apoptosis following the treatment of A549 cells by EP extract. The observed effects of EP extract on A549 growth and death were abrogated following blockage of CB2 using AM630, a specific antagonist of the CB2 receptor. Increasing concentrations of Cannabis sativa (CS) induced A549 cell death in a time-dependent manner, followed by induction of early apoptosis, cell cycle arrest at sub G1 phase, elevation of ROS level, and activation of caspase 3. The CB2 blockage caused attenuation of CS effects on A549 cell death which revealed consistency with the effects of EP extract on A549 cells.

Conclusions: The pro-apoptotic effects of EP and CS extracts on A549 cells and their possible regulatory role of CB2 activity might be attributed to metabolites of both herbs. These effects deserve receiving more attention as alternative anti-cancer agents.”

https://pubmed.ncbi.nlm.nih.gov/33446187/

“Both cannabinoid receptors and naturally occurring cannabinoids, known as phytocannabinoids, have potential therapeutic applications based on their pivotal roles in regulating immunologic responses, alleviating inflammation, tumor cell proliferation, angiogenesis, invasion, and migration. Based on the findings, it can be postulated that EP and CS extracts can inhibit lung cancer cell growth and induce apoptosis and should be considered as an alternative anti-cancer agent in lung cancer.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809807/

An external file that holds a picture, illustration, etc.
Object name is 12906_2021_3204_Figa_HTML.jpg

Cannabis-Derived Compounds Cannabichromene and Δ9-Tetrahydrocannabinol Interact and Exhibit Cytotoxic Activity against Urothelial Cell Carcinoma Correlated with Inhibition of Cell Migration and Cytoskeleton Organization

molecules-logo“Cannabis sativa contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer.

An XTT assay was used to determine cytotoxic activity of C. sativa extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR).

The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) C. sativa was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity.

Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment.”

https://pubmed.ncbi.nlm.nih.gov/33477303/

https://www.mdpi.com/1420-3049/26/2/465

The effect of cannabidiol on canine neoplastic cell proliferation and MAP Kinase activation during autophagy and apoptosis

“Low tetrahydrocannabinol Cannabis sativa products, also known as hemp products, have become widely available and their use in veterinary patients has become increasingly popular. Despite prevalence of use, the veterinary literature is lacking and evidence-based resource for cannabinoid efficacy.

The most prevailing cannabinoid found in hemp is cannabidiolic acid (CBDA) and becomes cannabidiol (CBD) during heat extraction; CBD has been studied for its direct anti-neoplastic properties alone and in combination with standard cancer therapies, yielding encouraging results.

The objectives of our study were to explore the anti-proliferative and cell death response associated with in vitro treatment of canine cancer cell lines with CBD alone and combination with common chemotherapeutics, as well as investigation into major proliferative pathways (e.g. p38, JNK, AKT, mTOR) potentially involved in the response to treatment with CBD.

CBD significantly reduced canine cancer cell proliferation far better than cannabidiolic acid (CBDA) across five canine neoplastic cell lines when treated with concentrations ranging from 2.5-10 μg/mL. Combinatory treatment with CBD and vincristine reduced cell proliferation in a synergistic or additive manner at anti-proliferative concentrations with less clear results using doxorubicin in combination with CBD. The cellular signaling effects of CBD treatment, showed that autophagy supervened induction of apoptosis and may be related to prompt induction of ERK and JNK phosphorylation prior to autophagy.

In conclusion, CBD is effective at hindering cell proliferation and induction of autophagy and apoptosis rapidly across neoplastic cell lines and further clinical trials are needed to understand its efficacy and interactions with traditional chemotherapy.”

https://pubmed.ncbi.nlm.nih.gov/33247539/

https://onlinelibrary.wiley.com/doi/10.1111/vco.12669

Cannabis and its Constituents for Cancer: History, Biogenesis, Chemistry and Pharmacological Activities

Pharmacological Research “Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant.

Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate.

Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-β, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients.

Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.”

https://pubmed.ncbi.nlm.nih.gov/33246167/

https://www.sciencedirect.com/science/article/abs/pii/S1043661820316108?via%3Dihub

Cannabinoid Combination Induces Cytoplasmic Vacuolation in MCF-7 Breast Cancer Cells

molecules-logo“This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis.

The most promising cannabinoid combination (C6) consisted of tetrahydrocannabinol, cannabigerol (CBG), cannabinol (CBN), and cannabidiol (CBD), and displayed favorable dose reduction indices and limited cytotoxicity against the non-cancerous breast cell line, MCF-10A. C6 exerted its effects in the MCF-7 cell line by inducing cell cycle arrest in the G2 phase, followed by the induction of apoptosis.

Morphological observations indicated the induction of cytoplasmic vacuolation, with further investigation suggesting that the vacuole membrane was derived from the endoplasmic reticulum. In addition, lipid accumulation, increased lysosome size, and significant increases in the endoplasmic reticulum chaperone protein glucose-regulated protein 78 (GRP78) expression were also observed.

The selectivity and ability of cannabinoids to halt cancer cell proliferation via pathways resembling apoptosis, autophagy, and paraptosis shows promise for cannabinoid use in standardized breast cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/33066359/

https://www.mdpi.com/1420-3049/25/20/4682

An Agathokakological tale of ∆9 -THC: Exploration of Possible Biological Targets

“∆ 9 -Tetrahydrocannabinol (∆9 -THC), the active phytocannabinoid in cannabis, is virtually an adjunct to the endogenous endocannabinoid signaling system.

By interacting with G-protein-coupled receptors CB1 and CB2, ∆9 -THC affects peripheral and central circulation by lowering sympathetic activity, altering gene expression, cell proliferation, and differentiation, decreasing leukocyte migration, modulating neurotransmitter release thereby modulating cardiovascular functioning, tumorigenesis, immune responses, behavioral and locomotory activities respectively.

∆ 9 -THC is effective in suppressing chemotherapy-induced vomiting, retards malignant tumor growth, inhibits metastasis, and promotes apoptosis. Other mechanisms involved are targeting cell cycle at the G2-M phase in human breast cancer, downregulation of E2F transcription factor 1 (E2F1) in human glioblastoma multiforme, and stimulation of ER stress-induced autophagy.

∆ 9 -THC also plays a role in ameliorating neuroinflammation, excitotoxicity, neuroplasticity, trauma, and stroke and is associated with reliving childhood epilepsy, brain trauma, and neurodegenerative diseases.

∆9 -THC via CB1 receptors affects nociception, emotion, memory, and reduces neuronal excitability and excitotoxicity in epilepsy. It also increases renal blood flow, reduces intraocular pressure via a sympathetic pathway, and modulates hormonal release, thereby decreasing the reproductive function and increasing glucose metabolism.

Versatile medical marijuana has stimulated abundant research demonstrating substantial therapeutic promise, suggesting the possibilities of first-in-class drugs in diverse therapeutic segments. In this review, we represent the current pharmacological status of the phytocannabinoid, ∆ 9 -THC, and synthetic analogs in cancer, cardiovascular, and neurodegenerative disorders.”

https://pubmed.ncbi.nlm.nih.gov/33001012/

https://www.eurekaselect.com/186455/article

Cannabidiol and Oxygen-Ozone Combination Induce Cytotoxicity in Human Pancreatic Ductal Adenocarcinoma Cell Lines

cancers-logo“Pancreatic cancer (PC) is related to lifestyle risks, chronic inflammation, and germline mutations in BRCA1/2ATMMLH1TP53, or CDKN2A. Surgical resection and adjuvant chemotherapy are the main therapeutic strategies but are less effective in patients with high-grade tumors.

Oxygen-ozone (O2/O3) therapy is an emerging alternative tool for the treatment of several clinical disorders. O2/O3 therapy has been found to ameliorate mechanisms promoting chronic pain and inflammation, including hypoxia, inflammatory mediators, and infection.

The advantages of using cannabinoids have been evaluated in vitro and in vivo models of several human cancers. Regarding PDAC, activation of cannabinoid receptors was found to induce pancreatic cancer cell apoptosis without affecting the normal pancreas cells.

In a murine model of PDAC, a combination of cannabidiol (CBD) and gemcitabine increased survival length by nearly three times. Herein, we evaluate the anticancer effect of CBD and O2/O3, alone or in combination, on two human PDAC cell lines, PANC-1 and MiaPaCa-2, examining expression profiles of 92 pancreatic adenocarcinoma associated genes, cytotoxicity, migration properties, and cell death. Finally, we assess the combination effects with gemcitabine and paclitaxel.

Summarizing, for the first time the antitumoral effect of combined therapy with CBD and oxygen-ozone therapy in PDAC is evidenced.”

https://pubmed.ncbi.nlm.nih.gov/32992648/

https://www.mdpi.com/2072-6694/12/10/2774

Cannabinoid CP55940 Selectively Induces Apoptosis in Jurkat Cells and in Ex Vivo T-cell Acute Lymphoblastic Leukemia Through H 2 O 2 Signaling Mechanism

 Leukemia Research‘T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous malignant hematological disorder arising from T-cell progenitors.

This study was aimed to evaluate the cytotoxic effect of CP55940 on human peripheral blood lymphocytes (PBL) and on T-ALL cells (Jurkat).

In conclusion, CP55940 selectively induces apoptosis in Jurkat cells through a H2O2-mediated signaling pathway.

Our findings support the use of cannabinoids as a potential treatment for T-ALL cells.”

https://pubmed.ncbi.nlm.nih.gov/32540572/

https://www.sciencedirect.com/science/article/abs/pii/S0145212620300941?via%3Dihub

“CP 55,940 is a synthetic cannabinoid which mimics the effects of naturally occurring THC (one of the psychoactive compounds found in cannabis)”  https://en.wikipedia.org/wiki/CP_55,940

Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol.

“Colorectal cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiation- and immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate, alternative combination therapies.

Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death.

Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which is found to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibits tumour metastasis and secondary spread.

This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and so enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/32294046

http://www.eurekaselect.com/180902/article

Synergistic cytotoxic activity of cannabinoids from cannabis sativa against cutaneous T-cell lymphoma (CTCL) in-vitro and ex-vivo.

 Peer-reviewed Oncology & Cancer Research Journal | Oncotarget“Cannabis sativa produces hundreds of phytocannabinoids and terpenes.

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood.

This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells.

This mixture induced cell cycle arrest and cell apoptosis. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5.

We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/32284791

“Cannabis sativa has been used by humanity for thousands of years. Various phytocannabinoids exhibit antitumor effects in a wide array of cell lines and animal models. We have shown that a certain synergistic mixture of phytocannabinoids derived from C. sativa extracts have significant cytotoxic activity against My-La and HuT-78 cell lines and against SPBL.

To conclude, active cannabis extract fractions and their synergistic combinations were cytotoxic to CTCL cell lines in in-vitro and to SPBL in ex-vivo studies. The defined S4+S5 formulation of synergistic phytocannabinoids induced cell cycle arrest and cell apoptosis, and affected multiple biological pathways, including those associated with cancer. Based on this pre-clinical study new cannabis-based products that are based on precise composition of synergistically interacting compounds may be developed.”

https://www.oncotarget.com/article/27528/text/