Avidekel Cannabis extracts and cannabidiol are as efficient as Copaxone in suppressing EAE in SJL/J mice.

“Multiple sclerosis (MS) is an autoimmune disease leading to the destruction of myelin with consequent axonal degeneration and severe physical debilitation. The disease can be treated with immunosuppressive drugs that alleviate the symptoms and retard disease aggravation. One such drug in clinical use is glatiramer acetate (Copaxone).

The non-psychotropic immunosuppressive cannabinoid compound cannabidiol (CBD) has recently been shown to have beneficial effects on experimental autoimmune encephalomyelitis (EAE). The aim of our study was to compare the efficacy of CBD and standardized extracts from a CBD-rich, ∆9-THClow Cannabis indica subspecies (Avidekel) with that of Copaxone.

Our data show that CBD and purified Avidekel extracts are as efficient as Copaxone to alleviate the symptoms of proteolipid protein (PLP)-induced EAE in SJL/J mice. No synergistic effect was observed by combining CBD or Avidekel extracts with Copaxone.

Our data support the use of Avidekel extracts in the treatment of MS symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/30291491

https://link.springer.com/article/10.1007%2Fs10787-018-0536-3

New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders.

medicines-logo

“Following the discovery of the endocannabinoid system and its potential as a therapeutic target for various pathological conditions, growing interest led researchers to investigate the role of cannabis and its derivatives for medical purposes. The compounds Δ9-tetrahydrocannabinol and cannabidiol are the most abundant phytocannabinoids found in cannabis extracts, as well as the most studied. The present review aims to provide an overview of the current evidence for their beneficial effects in treating psychiatric disorders, including schizophrenia, anxiety, and depression. Nevertheless, further investigations are required to clarify many pending issues, especially those relative to the assessment of benefits and risks when using cannabis for therapeutic purposes, thereby also helping national and federal jurisdictions to remain updated.”

https://www.ncbi.nlm.nih.gov/pubmed/30279403

https://www.mdpi.com/2305-6320/5/4/107

Cannabinoid Delivery Systems for Pain and Inflammation Treatment.

molecules-logo

“There is a growing body of evidence to suggest that cannabinoids are beneficial for a range of clinical conditions, including pain, inflammation, epilepsy, sleep disorders, the symptoms of multiple sclerosis, anorexia, schizophrenia and other conditions.

The transformation of cannabinoids from herbal preparations into highly regulated prescription drugs is therefore progressing rapidly. The development of such drugs requires well-controlled clinical trials to be carried out in order to objectively establish therapeutic efficacy, dose ranges and safety.

The low oral bioavailability of cannabinoids has led to feasible methods of administration, such as the transdermal route, intranasal administration and transmucosal adsorption, being proposed. The highly lipophilic nature of cannabinoids means that they are seen as suitable candidates for advanced nanosized drug delivery systems, which can be applied via a range of routes.

Nanotechnology-based drug delivery strategies have flourished in several therapeutic fields in recent years and numerous drugs have reached the market. This review explores the most recent developments, from preclinical to advanced clinical trials, in the cannabinoid delivery field, and focuses particularly on pain and inflammation treatment. Likely future directions are also considered and reported.”

https://www.ncbi.nlm.nih.gov/pubmed/30262735

https://www.mdpi.com/1420-3049/23/10/2478

Cannabidiol Administered During Peri-Adolescence Prevents Behavioral Abnormalities in an Animal Model of Schizophrenia.

Image result for frontiers in pharmacology

“Schizophrenia is considered a debilitating neurodevelopmental psychiatric disorder and its pharmacotherapy remains problematic without recent major advances. The development of interventions able to prevent the emergence of schizophrenia would therefore represent an enormous progress.

Here, we investigated whether treatment with cannabidiol (CBD – a compound of Cannabis sativa that presents an antipsychotic profile in animals and humans) during peri-adolescence would prevent schizophrenia-like behavioral abnormalities in an animal model of schizophrenia: the spontaneously hypertensive rat (SHR) strain.

Treatment with CBD prevented the emergence of SHRs’ hyperlocomotor activity (a model for the positive symptoms of schizophrenia) and deficits in prepulse inhibition of startle and contextual fear conditioning (cognitive impairments). CBD did not induce any of the potential motor or metabolic side effects evaluated. Treatment with CBD increased the prefrontal cortex 5-HIAA/serotonin ratio and the levels of 5-HIAA on post-natal days 61 and 90, respectively.

Our data provide pre-clinical evidence for a safe and beneficial effect of peripubertal and treatment with CBD on preventing positive and cognitive symptoms of schizophrenia, and suggest the involvement of the serotoninergic system on this effect.”

https://www.ncbi.nlm.nih.gov/pubmed/30186164

https://www.frontiersin.org/articles/10.3389/fphar.2018.00901/full

Should Cannabinoids Be Added to Multimodal Pain Regimens After Total Hip and Knee Arthroplasty?

Journal of Arthroplasty Home

“This study investigated the effects of dronabinol on pain, nausea, and length of stay following total joint arthroplasty (TJA).

CONCLUSION:

These findings suggest that further investigation into the role of cannabinoid medications for non-opioid pain control in the post-arthroplasty patient may hold merit.”

https://www.ncbi.nlm.nih.gov/pubmed/30170713

“In conclusion, our study suggests that cannabinoids may have a role in post-arthroplasty pain management and may reduce patient’s need for opioid-containing pain medications. Further randomized, prospective clinical trials are warranted to shed more light onto the possible beneficial effects of cannabinoid medications in the orthopedic surgery patient population.” https://www.arthroplastyjournal.org/article/S0883-5403(18)30670-3/fulltext

Potential clinical benefits of CBD-rich Cannabis extracts over purified cannabidiol (CBD) in treatment-resistant epilepsy: observational data meta-analysis

“This meta-analysis paper describes the analysis of observational clinical studies on the treatment of refractory epilepsy with cannabidiol (CBD)-based products. Beyond attempting to establish the safety and efficacy of such products, we also investigated if there is enough evidence to assume any difference in efficacy between CBD-rich extracts compared to purified CBD products.

The systematic search took place in February/2017 and updated in December/2017 using the keywords “epilepsy” or “Dravet” or “Lennox-Gastaut” or “CDKL5” combined with “Cannabis”, “cannabinoid”, “cannabidiol” or “CBD” resulting in 199 papers. The qualitative assessment resulted in 11 valid references, with an average impact factor of 8.1 (ranging from 1.4 to 47.8). The categorical data of a total of 670 patients were analyzed by Fischer test. The average daily dose ranged between 1 and 50 mg/kg, with treatment length from 3 to 12 months (mean 6.2 months).

Two thirds of patients reported improvement in the frequency of convulsive crisis (399/622, 64%). There were more reports of improvement from patients treated with CBD-rich extracts (318/447, 71%) than patients treated with purified CBD (81/223, 36%), with statistical significance (p<0.0001).

Nevertheless, when the standard clinical threshold of a “50% reduction or more in the frequency of convulsive crisis” was applied, only 39% of the individuals were considered “responders”, and there was no difference (p=0.56) between treatments with CBD-rich extracts (97/255, 38%) and purified CBD (94/223, 42%).

Patients treated with CBD-rich extracts reported lower average dose (6.1 mg/kg/day) than those using purified CBD (27.1 mg/kg/day). The reports of mild (109/285 vs 291/346, p<0.0001) and severe (23/285 vs 77/346, p<0.0001) adverse effects were more frequent in products containing purified CBD than in CBD-rich extracts.

CBD-rich extracts seem to present a better therapeutic profile than purified CBD, at least in this population of patients with refractory epilepsy. The roots of this difference is likely due to synergistic effects of CBD with other phytocompounds (aka Entourage effect), but this remains to be confirmed in controlled clinical studies.”

Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells.

Image result for frontiers in immunology

“Multiple sclerosis (MS) is a chronic debilitating autoimmune disease without a cure. While the use of marijuana cannabinoids for MS has recently been approved in some countries, the precise mechanism of action leading to attenuate neuroinflammation is not clear. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory properties of cannabidiol (CBD), a non-psychoactive cannabinoid. Treatment with CBD caused attenuation of EAE disease paradigms as indicated by a significant reduction in clinical scores of paralysis, decreased T cell infiltration in the central nervous system, and reduced levels of IL-17 and IFNγ. Interestingly, CBD treatment led to a profound increase in myeloid-derived suppressor cells (MDSCs) in EAE mice when compared to the vehicle-treated EAE controls. These MDSCs caused robust inhibition of MOG-induced proliferation of T cells in vitro. Moreover, adoptive transfer of CBD-induced MDSCs ameliorated EAE while MDSC depletion reversed the beneficial effects of CBD treatment, thereby conclusively demonstrating that MDSCs played a crucial role in CBD-mediated attenuation of EAE. Together, these studies demonstrate for the first time that CBD treatment may ameliorate EAE through induction of immunosuppressive MDSCs.”

https://www.ncbi.nlm.nih.gov/pubmed/30123217

“In conclusion, we have demonstrated that the mitigation of EAE with CBD comes from its ability to target a range of anti-inflammatory pathways, including (i) induction of anti-inflammatory MDSCs and (ii) decrease in pro-inflammatory and induction of anti-inflammatory cytokines. Because CBD is non-psychoactive, our studies suggest that CBD may constitute an excellent candidate for the treatment of MS and other autoimmune diseases. Our studies provide further evidence of the importance of MDSCs and that manipulation of such cells may constitute novel therapeutic modality to treat MS and other autoimmune diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2018.01782/full

Cannabinoid signalling in the immature brain: encephalopathies and neurodevelopmental disorders.

Biochemical Pharmacology

“The endocannabinoid system exerts a crucial neuromodulatory role in many brain areas that is essential for proper regulation of neuronal activity. The role of cannabinoid signalling controlling neuronal activity in the adult brain is also evident when considering its contribution to adult brain insults or neurodegenerative diseases.

In the context of brain genetic or acquired encephalopathies administration of cannabinoid-based molecules has demonstrated to exert symptomatic relief and hence, they are proposed as new potential therapeutic compounds.

This review article summarizes the main evidences indicating the beneficial action of cannabinoid-derived molecules in preclinical models of neonatal hypoxia/ischemic damage. In a second part, we discuss the available evidences of therapeutic actions of cannabidiol in children with refractory epilepsy syndromes. Finally, we discuss the current view of cannabinoid signalling mechanisms active in the immature brain that affect in neural cell fate and can contribute to long-term neural cell plasticity.”

https://www.ncbi.nlm.nih.gov/pubmed/30118663

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303344

Traditional Uses of Cannabinoids and New Perspectives in the Treatment of Multiple Sclerosis.

medicines-logo

“Recent findings highlight the emerging role of the endocannabinoid system in the control of symptoms and disease progression in multiple sclerosis (MS). MS is a chronic, immune-mediated, demyelinating disorder of the central nervous system with no cure so far. It is widely reported in the literature that cannabinoids might be used to control MS symptoms and that they also might exert neuroprotective effects and slow down disease progression. This review aims to give an overview of the principal cannabinoids(synthetic and endogenous) used for the symptomatic amelioration of MS and their beneficial outcomes, providing new potentially possible perspectives for the treatment of this disease.”

https://www.ncbi.nlm.nih.gov/pubmed/30111755

http://www.mdpi.com/2305-6320/5/3/91

Cannabinoid pharmacology and therapy in gut disorders.

Biochemical Pharmacology

“Cannabis sp and their products (marijuana, hashish…), in addition to their recreational, industrial and other uses, have a long history for their use as a remedy for symptoms related with gastrointestinal diseases.

After many reports suggesting these beneficial effects, it was not surprising to discover that the gastrointestinal tract expresses endogenous cannabinoids, their receptors, and enzymes for their synthesis and degradation, comprising the so-called endocannabinoid system.

This system participates in the control of tissue homeostasis and important intestinal functions like motor and sensory activity, nausea, emesis, the maintenance of the epithelial barrier integrity, and the correct cellular microenvironment. Thus, different cannabinoid-related pharmacological agents may be useful to treat the main digestive pathologies.

To name a few examples, in irritable bowel syndrome they may normalize dysmotility and reduce pain, in inflammatory bowel disease they may decrease inflammation, and in colorectal cancer, apart from alleviating some symptoms, they may play a role in the regulation of the cell niche.

This review summarizes the main recent findings on the role of cannabinoid receptors, their synthetic or natural ligands and their metabolizing enzymes in normal gastrointestinal function and in disorders including irritable bowel syndrome, inflammatory bowel disease, colon cancer and gastrointestinal chemotherapy-induced adverse effects (nausea/vomiting, constipation, diarrhea).”