Phytocannabinoids and cannabimimetic drugs: recent patents in central nervous system disorders.

“Starting from the chemical structure of phytocannabinoids, isolated from Cannabis sativa plant, research groups designed numerous cannabimimetic drugs.

These compounds according to their activities can be partial, full agonists and antagonists of cannabinoid receptors.

Anecdotal reports and scientific studies described beneficial properties of cannabinoids and their derivatives in several pathological conditions like neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases.

The cannabinoid CB1 receptor was considered particularly interesting for therapeutic approaches in neurological diseases, because primarily expressed by neurons of the central nervous system. In many experimental models, these drugs act via this receptor, however, CB1 receptor independent mechanisms have been also described. Furthermore, endogenous ligands of cannabinoid receptors, the endocannabinoids, are potent modulators of the synaptic function in the brain. In neurological diseases, numerous studies reported modulation of the levels of endocannabinoids according to the phase of the disease and its progression.

CONCLUSIONS:

Finally, although the study of the mechanisms of action of these compounds is still unsolved, many reports and patents strongly suggest therapeutic potential of these compounds in neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27184693

Industrial hemp decreases intestinal motility stronger than indian hemp in mice.

“Indian hemp has shown beneficial effects in various gastrointestinal conditions but it is not widely accepted due to high content of tetrahydrocannabinol resulting in unwanted psychotropic effects.

Since industrial hemp rich in cannabidiol lacks psychotropic effects the aim of research was to study the effects of industrial hemp on intestinal motility.

Although not completely without psychotropic activity cannabidiol could be a potential replacement for tetrahydrocannabinol.

Since industrial hemp infuse rich in cannabidiol reduces intestinal motility in healthy mice cannabidiol should be further evaluated for the treatment of intestinal hypermotility.”

http://www.ncbi.nlm.nih.gov/pubmed/23467947

Prohedonic Effect of Cannabidiol in a Rat Model of Depression.

“Accumulating evidence suggests that cannabidiol (CBD) may be an effective and safe anxiolytic agent and potentially also an antidepressant.

 These findings extend the limited knowledge on the antidepressant effect of CBD, now shown for the first time in a genetic animal model of depression. These results suggest that CBD may be beneficial for the treatment of clinical depression and other states with prominent anhedonia.”

http://www.ncbi.nlm.nih.gov/pubmed/27010632

http://www.thctotalhealthcare.com/category/depression-2/

Role of cannabinoids in gastrointestinal mucosal defense and inflammation.

“Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids represent potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation.

Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms.

Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduced the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion.

Dual inhibition of FAAH and cyclooxygenase induced protection against both NSAID-induced gastrointestinal damage and intestinal inflammation.

Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects.

Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea.

In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.”

http://www.ncbi.nlm.nih.gov/pubmed/26935536

Cannabinoids: Medical implications.

“Herbal cannabis has been used for thousands of years for medical purposes.

With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored.

While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy.

While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards.

Where medical cannabis is legal, patients typically see a physician who “certifies” that a benefit may result.

Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis.

Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects.

Key messages The medical disorders with the current best evidence that supports a benefit for cannabinoid use are the following: multiple sclerosis patient-reported symptoms of spasticity (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis central pain or painful spasms (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis bladder frequency (nabiximols), and chronic cancer pain/neuropathic pain (nabiximols and smoked THC).

Participating physicians should be knowledgeable about cannabinoids, closely look at the risk/benefit ratio, and consider certain important criteria in selecting a patient, such as: age, severity, and nature of the medical disorder, prior or current serious psychiatric or substance use disorder, failure of standard medical therapy as well as failure of an approved cannabinoid, serious underlying cardiac/pulmonary disease, agreement to follow-up visits, and acceptance of the detailed explanation of potential adverse risks.

The normal human endocannabinoid system is important in the understanding of such issues as normal physiology, cannabis use disorder, and the development of medications that may act as agonists or antagonists to CB1 and CB2.

By understanding the endocannabinoid system, it may be possible to enhance the beneficial effects of cannabinoid-related medication, while reducing the harmful effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26912385

Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer’s Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine.

“The endogenous cannabinoid system represents a promising therapeutic target to modify neurodegenerative pathways linked to Alzheimer’s disease (AD).

The aim of the present study was to evaluate the specific contribution of CB2 receptor to the progression of AD-like pathology and its role in the positive effect of a cannabis-based medicine (1:1 combination of Δ9-tetrahidrocannabinol and cannabidiol) previously demonstrated to be beneficial in the AβPP/PS1 transgenic model of the disease.

A new mouse strain was generated by crossing AβPP/PS1 transgenic mice with CB2 knockout mice. Results show that lack of CB2 exacerbates cortical Aβ deposition and increases the levels of soluble Aβ40. However, CB2 receptor deficiency does not affect the viability of AβPP/PS1 mice, does not accelerate their memory impairment, does not modify tau hyperphosphorylation in dystrophic neurites associated to Aβ plaques, and does not attenuate the positive cognitive effect induced by the cannabis-based medicine in these animals.

These findings suggest a minor role for the CB2 receptor in the therapeutic effect of the cannabis-based medicine in AβPP/PS1 mice, but also constitute evidence of a link between CB2 receptor and Aβ processing.”

http://www.ncbi.nlm.nih.gov/pubmed/26890764

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling

Image result for the journal of neuroscience logo

“Cannabinoids exert pleiotropic actions in the CNS, including the inhibition of inflammatory responses and the enhancement of neuronal survival after injury… cannabinoid receptors are distributed widely in brain… Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling.

Limited clinical studies have suggested that cannabis might ameliorate the symptomatology in multiple sclerosis patients, and beneficial effects of synthetic cannabinoids have been reported in vivoin rodent models of multiple sclerosis.

Apart from their actions on motor and pain pathways, cannabinoids regulate the immune response by reducing the production of inflammatory mediators by leukocytes, astrocytes, and microglia, which may contribute to their beneficial effects.

The results of the present study also point to a direct role of cannabinoids in promoting the survival of oligodendrocyte progenitors, particularly in unfavorable conditions, as would be the case in demyelinating diseases. Studies in progress are aimed to evaluate the function of cannabinoids in other models affecting oligodendroglial survival.

http://www.jneurosci.org/content/22/22/9742.long

Cannabinoids for treatment of glaucoma.

“The purpose of this article is to review the current status of cannabis in the treatment of glaucoma, including the greater availability of marijuana in the USA.

The pharmacology of marijuana and its effect on intraocular pressure has not changed since the research in the 1970s and 1980s.

Marijuana is an effective ocular hypotensive agent.

However, cardiovascular and neurological effects are observed at the same dose, and may theoretically reduce the beneficial effect of lowering intraocular pressure by reducing ocular blood flow. The clinician must be cognizant of this potential in diagnosis, prognosis, and therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26840343

The cardiac and haemostatic effects of dietary hempseed

Logo of nutrmeta

“Cannabis sativa L. is an annual plant in the Cannabaceae family. It has been an important source of food, fiber, medicine and psychoactive/religious drug since prehistoric times. Hemp has a botanical relationship to drug/medicinal varieties of Cannabis. However, hempseed no longer contains psychotropic action and instead may provide significant health benefits. Hempseed has an excellent content of omega-3 and omega-6 fatty acids. These compounds have beneficial effects on our cardiovascular health.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868018/

Cannabidiol limits Tcell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation.

“Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen.

Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis.

Cannabidiol (CBD) is a non-psychoactive constituent of Marijuana which exerts antiinflammatory effects independent from classical cannabinoid receptors.

Recently 80 clinical trials have been reported investigating the effects of CBD in various diseases from inflammatory bowel disease to graft-versus-host disease.

CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received FDA approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme.

Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD…

CBD may represent a promising novel treatment for management of autoimmune myocarditis and possibly other autoimmune disorders, and organ transplantation.”

http://www.ncbi.nlm.nih.gov/pubmed/26772776