Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

“Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions…

The present study was designed to investigate the central (CB1) and the peripheral (CB2)cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia.

The antagonist for the CB2, but not CB1 receptor antagonist abolished the protective effect of THC.

In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors.

Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors.

L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC.

Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production.

An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16444588

Effect of dietary hempseed intake on cardiac ischemia-reperfusion injury.

Regulatory, Integrative and Comparative Physiology

“Polyunsaturated fatty acids (PUFAs) have significant, cardioprotective effects against ischemia.

Hempseed contains a high proportion of the PUFAs linoleic acid (LA) and alpha-linolenic acid (ALA),

Hearts from rats fed a hempseed-supplemented diet exhibited significantly better postischemic recovery of maximal contractile function and enhanced rates of tension development and relaxation during reperfusion than hearts from the other groups.

Our data demonstrate that dietary hempseed can provide significant cardioprotective effects during postischemic reperfusion. This appears to be due to its highly enriched PUFA content.”  http://www.ncbi.nlm.nih.gov/pubmed/17122327

“Polyunsaturated fatty acids (PUFAs) have received special research attention because of their antiarrhythmic and cardioprotective effects in hearts challenged by an ischemia-reperfusion insult. There are two major types of PUFAs: omega-3 and omega-6. Linoleic acid (LA) and α-linolenic acid (ALA) are common examples of an omega-6 and an omega-3 fatty acid, respectively… We have demonstrated for the first time in this study that dietary hempseed represents an effective, unique method to significantly alter the levels of ALA in the heart. We have also demonstrated for the first time that dietary hempseed will confer beneficial cardioprotective effects in hearts subjected to ischemia-reperfusion challenge.”  http://ajpregu.physiology.org/content/292/3/R1198

[Cardiac and vascular effects of cannabinoids: toward a therapeutic use?].

“Interest in cannabinoid pharmacology developed rapidly since the discovery of cannabinoids receptors and endocannabinoids. Modulation of this system is becoming a hot topic in cardiovascular pharmacology mainly at the light of recent findings.

Among them, cardiac effects of cannabinoids were described with respect to their probable participation to the well-studied preconditioning phenomenon.

Beneficial effects of post-infarction cannabinoids administration against ischemia-reperfusion injury were also reported.

Finally, pathological situations concerning the cardiovascular system and including brain ischemia, hemorrhagic and endotoxic shocks were reported to be linked with endocannabinoids.

However, the clinical use of cannabinoid receptors agonists or antagonists will depend on the development of non psychoactive compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/15828464

Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model.

“This study was performed to investigate the effects of CBR agonists on skin inflammation, using acute and chronic inflammation animal models.

All of the results suggest that topical application of CB1R-specific agonist can be beneficial for alleviating the inflammatory symptoms in chronic skin diseases, including atopic dermatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/26095080

Cannabidiol as an Intervention for Addictive Behaviors: A Systematic Review of the Evidence.

“Drug addiction is a chronically relapsing disorder characterized by the compulsive desire to use drugs and a loss of control over consumption.

Cannabidiol (CBD), the second most abundant component of cannabis, is thought to modulate various neuronal circuits involved in drug addiction.

The goal of this systematic review is to summarize the available preclinical and clinical data on the impact of CBD on addictive behaviors.

MEDLINE and PubMed were searched for English and French language articles published before 2015. In all, 14 studies were found, 9 of which were conducted on animals and the remaining 5 on humans.

A limited number of preclinical studies suggest that CBD may have therapeutic properties on opioid, cocaine, and psychostimulant addiction, and some preliminary data suggest that it may be beneficial in cannabis and tobacco addiction in humans.

Further studies are clearly necessary to fully evaluate the potential of CBD as an intervention for addictive disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26056464

“CBD is an exogenous cannabinoid that acts on several neurotransmission systems involved in addiction. Animal studies have shown the possible effects of CBD on opioid and psychostimulant addiction, while human studies presented some preliminary evidence of a beneficial impact of CBD on cannabis and tobacco dependence. CBD has several therapeutic properties on its own that could indirectly be useful in the treatment of addiction disorders, such as its protective effect on stress vulnerability and neurotoxicity… The dreadful burden of substance-use disorder worldwide, combined with the clear need for new medication in the addiction field, justifies the requirement of further studies to evaluate the potential of CBD as a new intervention for addictive behaviors.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444130/

http://www.thctotalhealthcare.com/category/addiction/

Impact of cannabis treatment on the quality of life, weight and clinical disease activity in inflammatory bowel disease patients: a pilot prospective study.

“Inflammatory bowel disease (IBD) patients suffer from significant morbidity and diminished life quality.

The plant cannabis is beneficial in various gastrointestinal diseases, stimulating appetite and causing weight gain.

Our aims were to assess whether treatment with inhaled cannabis improves quality of life, disease activity and promotes weight gain in these patients.

CONCLUSIONS:

Three months’ treatment with inhaled cannabis improves quality of life measurements, disease activity index, and causes weight gain and rise in BMI in long-standing IBD patients.”

http://www.ncbi.nlm.nih.gov/pubmed/22095142

http://www.thctotalhealthcare.com/category/inflammatory-bowel-disease-2/

Cannabis Enhances Bipolar Patients’ Neurocognitive Performance

Image result for medicalnewstoday

“According to a study published online in the journal Psychiatry Research, individuals with bipolar disorder who used cannabis showed higher neurocognitive performance than patients who did not use cannabis.

Researchers at The Zucker Hillside Hospital in Long Island, NY, in collaboration with a team at the Mount Sinai School of Medicine and the Albert Einstein College of Medicine in New York City, examined the difference in cognitive performance among 50 individuals with bipolar disorder who had a history of cannabis use, with 150 bipolar patients who had no history of cannabis use.

The team discovered that patients who used cannabis showed superior neurocognitive performance than those who did not…

“These data could be interpreted to suggest that cannabis use may have a beneficial effect on cognitive functioning in patients with severe psychiatric disorders…””

http://www.medicalnewstoday.com/articles/249006.php

“Cognitive and clinical outcomes associated with cannabis use in patients with bipolar I disorder”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408776/

The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

“Oxidative stress and inflammation play critical roles in the development of diabetes and its complications.

Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions.

The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications.

This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system.

The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed.

Although there is much controversy in the field of EC research, experimental evidence and clinical trials have clearly shown that ECS plays a key role in the development of primary diabetes and various diabetic complications. Although inhibition of CB1 receptors has proven to be effective in clinical trials of obesity and metabolic syndrome, this approach has ultimately failed because of increasing patient anxiety. However, recent preclinical studies clearly showed that peripherally restricted CB1 antagonists may represent a viable therapeutic strategy to avoid the previously mentioned adverse effects.

Importantly, CB1 inhibition, as discussed in this review, may also directly attenuate inflammatory responses and ROS and reactive nitrogen species generation in endothelial, immune, and other cell types, as well as in target tissues of diabetic complications, far beyond its known beneficial metabolic consequences. The main effects of CB1 receptor activation on the development of diabetes and diabetic complications are summarized in Figure 1. CB2 agonists may exert beneficial effects on diabetes and diabetic complications by attenuating inflammatory response and ensuing oxidative stress (Figure 2).

Natural cannabinoids, such as CBD and THCV, also have tremendous therapeutic potential.

CBD is a potent antioxidant and anti-inflammatory agent that does not appear to exert its beneficial effects through conventional CB receptors and is already approved for human use.

THCV and its derivatives, which may combine the beneficial effects of simultaneous CB1 inhibition and CB2 stimulation, are still under intense preclinical investigation. It will be interesting to see how newly developed, peripherally restricted CB1 receptor antagonists and/or CB2 receptor agonists and certain natural cannabinoids, such as CBD and THCV, will influence the clinical outcomes of diabetic patients.

We hope that some of these new approaches will be useful in clinical practice in the near future to aid patients with diabetes.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349875/

http://www.thctotalhealthcare.com/category/diabetes/

The endocannabinoid system in obesity and type 2 diabetes.

“Endocannabinoids (ECs) are defined as endogenous agonists of cannabinoid receptors type 1 and 2 (CB1 and CB2). ECs, EC anabolic and catabolic enzymes and cannabinoid receptors constitute the EC signalling system. This system participates in the control of lipid and glucose metabolism at several levels, with the possible endpoint of the accumulation of energy as fat.

Following unbalanced energy intake, however, the EC system becomes dysregulated, and in most cases overactive, in several organs participating in energy homeostasis, particularly, in intra-abdominal adipose tissue. This dysregulation might contribute to excessive visceral fat accumulation and reduced adiponectin release from this tissue, and to the onset of several cardiometabolic risk factors that are associated with obesity and type 2 diabetes.

This phenomenon might form the basis of the mechanism of action of CB1 antagonists/inverse agonists, recently developed by several pharmaceutical companies as adjuvants to lifestyle modification for weight reduction, glycaemic control and dyslipidaemia in obese and type 2 diabetes patients.

It also helps to explain why some of the beneficial actions of these new therapeutics appear to be partly independent from weight loss.”

http://www.ncbi.nlm.nih.gov/pubmed/18563385

http://www.thctotalhealthcare.com/category/obesity-2/

http://www.thctotalhealthcare.com/category/diabetes/

Effects of Cannabinoids on T-cell Function and Resistance to Infection.

“This review examines the effects of cannabinoids on immune function, with a focus on effects on T-cells, as well as on resistance to infection. The paper considers the immune modulating capacity of marijuana, of ∆9-THC extracted from the marijuana plant, and synthetic cannabinoids…

The overall conclusion of the studies discussed in this review is that cannabinoids that bind to the CB2 receptor, including ∆9-THC and CB2 selective agonists are immunosuppressive.

The studies provide objective evidence for potentially beneficial effects of marijuana and ∆9-THC on the immune system in conditions where it is desirable to dampen immune responses.

An emerging area of investigation that is reviewed is evidence to support the conclusion that CB2 selective agonists are a new class of immunosuppressive and anti-inflammatory compounds that may have exceptional beneficial effects in a variety of conditions, such as autoimmune diseases and graft rejection, where it is desirable to dampen the immune response without psychoactive effects.”

http://www.ncbi.nlm.nih.gov/pubmed/25876735

http://www.thctotalhealthcare.com/category/autoimmune-disease/