Impact of Cannabinoids on Symptoms of Refractory Gastroparesis: A Single-center Experience.

“Cannabinoids are increasingly used for medicinal purposes, including neuropathy.

Gastroparesis is a neuromuscular disorder and neuropathy plays a large role in its pathogenesis. It is thus reasonable that cannabinoids can serve a beneficial role in the management of gastroparesis.

Our study evaluates the effect of cannabinoids on gastroparesis symptoms.

A significant improvement in the GCSI total symptom composite score was seen with either cannabinoid treatment (mean score difference of 12.8, 95% confidence interval 10.4-15.2; p-value < 0. 001). Patients prescribed marijuana experienced a statistically significant improvement in every GCSI symptom subgroup. Significant improvement in abdominal pain score was also seen with either cannabinoid treatment (mean score difference of 1.6; p-value <0.001).

Conclusions: Cannabinoids dramatically improve the symptoms of gastroparesis. Furthermore, an improvement in abdominal pain with cannabinoids represents a breakthrough for gastroparesis-associated abdominal pain treatment, for which there are currently no validated therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/31993268

“In conclusion, cannabinoids dramatically improve refractory gastroparesis symptoms, including abdominal pain. Marijuana may be superior to dronabinol in improving these symptoms, though both cannabinoids seem to be promising as novel therapeutic options in gastroparesis.”

https://www.cureus.com/articles/25832-impact-of-cannabinoids-on-symptoms-of-refractory-gastroparesis-a-single-center-experience

Cannabinoids and Opioids in the Treatment of Inflammatory Bowel Diseases.

Image result for clinical and translational gastroenterology“In traditional medicine, Cannabis sativa has been prescribed for a variety of diseases. Today, the plant is largely known for its recreational purpose, but it may find a way back to what it was originally known for: a herbal remedy. Most of the plant’s ingredients, such as Δ-tetrahydrocannabinol, cannabidiol, cannabigerol, and others, have demonstrated beneficial effects in preclinical models of intestinal inflammation. Endogenous cannabinoids (endocannabinoids) have shown a regulatory role in inflammation and mucosal permeability of the gastrointestinal tract where they likely interact with the gut microbiome. Anecdotal reports suggest that in humans, Cannabis exerts antinociceptive, anti-inflammatory, and antidiarrheal properties. Despite these reports, strong evidence on beneficial effects of Cannabis in human gastrointestinal diseases is lacking. Clinical trials with Cannabis in patients suffering from inflammatory bowel disease (IBD) have shown improvement in quality of life but failed to provide evidence for a reduction of inflammation markers. Within the endogenous opioid system, mu opioid receptors may be involved in anti-inflammation of the gut. Opioids are frequently used to treat abdominal pain in IBD; however, heavy opioid use in IBD is associated with opioid dependency and higher mortality. This review highlights latest advances in the potential treatment of IBD using Cannabis/cannabinoids or opioids.”

https://www.ncbi.nlm.nih.gov/pubmed/31899693

https://journals.lww.com/ctg/Abstract/latest/Cannabinoids_and_Opioids_in_the_Treatment_of.99898.aspx

Cannabis for Pediatric Epilepsy.

 Related image“Epilepsy is a chronic disease characterized by recurrent unprovoked seizures. Up to 30% of children with epilepsy will be refractory to standard anticonvulsant therapy, and those with epileptic encephalopathy can be particularly challenging to treat.

The endocannabinoid system can modulate the physiologic processes underlying epileptogenesis. The anticonvulsant properties of several cannabinoids, namely Δ-tetrahydrocannabinol and cannabidiol (CBD), have been demonstrated in both in vitro and in vivo studies.

Cannabis-based therapies have been used for millennia to treat a variety of diseases including epilepsy. Several studies have shown that CBD, both in isolation as a pharmaceutical-grade preparation or as part of a CBD-enriched cannabis herbal extract, is beneficial in decreasing seizure frequency in children with treatment-resistant epilepsy.

Overall, cannabis herbal extracts appear to provide greater efficacy in decreasing seizure frequency, but the studies assessing cannabis herbal extract are either retrospective or small-scale observational studies. The two large randomized controlled studies assessing the efficacy of pharmaceutical-grade CBD in children with Dravet and Lennox-Gastaut syndromes showed similar efficacy to other anticonvulsants. Lack of data regarding appropriate dosing and pediatric pharmacokinetics continues to make authorization of cannabis-based therapies to children with treatment-resistant epilepsy challenging.”

https://www.ncbi.nlm.nih.gov/pubmed/31895184

https://insights.ovid.com/crossref?an=00004691-202001000-00002

Antioxidative and Anti-Inflammatory Properties of Cannabidiol.

antioxidants-logo“Cannabidiol (CBD) is one of the main pharmacologically active phytocannabinoids of Cannabis sativa L. CBD is non-psychoactive but exerts a number of beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. The chemistry and pharmacology of CBD, as well as various molecular targets, including cannabinoid receptors and other components of the endocannabinoid system with which it interacts, have been extensively studied. In addition, preclinical and clinical studies have contributed to our understanding of the therapeutic potential of CBD for many diseases, including diseases associated with oxidative stress. Here, we review the main biological effects of CBD, and its synthetic derivatives, focusing on the cellular, antioxidant, and anti-inflammatory properties of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31881765

https://www.mdpi.com/2076-3921/9/1/21

Cannabis Exposure is Associated With a Lower Likelihood of Neurocognitive Impairment in People Living With HIV.

Image result for ovid journal “Aging and HIV have adverse effects on the central nervous system, including increased inflammation and neural injury and confer risk of neurocognitive impairment (NCI).

Previous research suggests the nonacute neurocognitive effects of cannabis in the general population are adverse or null. However, in the context of aging and HIV, cannabis use may exert beneficial effects due to its anti-inflammatory properties.

In the current study, we examined the independent and interactive effects of HIV and cannabis on NCI and the potential moderation of these effects by age.

METHODS:

Participants included 679 people living with HIV (PLHIV) and 273 people living without HIV (HIV-) (18-79 years old) who completed neurocognitive, neuromedical, and substance use assessments. NCI was defined as a demographically corrected global deficit score ≥ 0.5. Logistic regression models examined the effects of age, HIV, cannabis (history of cannabis substance use disorder and cannabis use in past year), and their 2-way and 3-way interactions on NCI.

RESULTS:

In logistic regression models, only a significant interaction of HIV X cannabis was detected (P = 0.02). Among PLHIV, cannabis was associated with a lower proportion of NCI (odds ratio = 0.53, 95% confidence interval = 0.33-0.85) but not among HIV- individuals (P = 0.40). These effects did not vary by age.

CONCLUSIONS:

Findings suggest cannabis exposure is linked to a lower odds of NCI in the context of HIV. A possible mechanism of this result is the anti-inflammatory effect of cannabis, which may be particularly important for PLHIV. Further investigations are needed to refine the effects of dose, timing, and cannabis compound on this relationship, which could inform guidelines for cannabis use among populations vulnerable to cognitive decline.”

https://www.ncbi.nlm.nih.gov/pubmed/31809361

https://insights.ovid.com/crossref?an=00126334-202001010-00008

Cannabinoids and the Microbiota-Gut-Brain-Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders.

Alcoholism: Clinical and Experimental Research banner“The endocannabinoid system (ECS) has emerged in recent years as a potential treatment target for alcohol use disorders (AUD).

In particular, the non-psychoactive cannabinoid cannabidiol (CBD) has shown preclinical promise in ameliorating numerous clinical symptoms of AUD.

There are several proposed mechanism(s) through which cannabinoids (and CBD in particular) may confer beneficial effects in the context of AUD. First, CBD may directly impact specific brain mechanisms underlying AUD to influence alcohol consumption and the clinical features of AUD. Second, CBD may influence AUD symptoms through its actions across the digestive, immune, and central nervous systems, collectively known as the microbiota-gut-brain-axis (MGBA).

Notably, emerging work suggests that alcohol and cannabinoids exert opposing effects on the MGBA.

Alcohol is linked to immune dysfunction (e.g., chronic systemic inflammation in the brain and periphery) as well as disturbances in gut microbial species (microbiota) and increased intestinal permeability. These MGBA disruptions have been associated with AUD symptoms such as craving and impaired cognitive control.

Conversely, existing preclinical data suggest that cannabinoids may confer beneficial effects on the gastrointestinal and immune system, such as reducing intestinal permeability, regulating gut bacteria and reducing inflammation. Thus, cannabinoids may exert AUD harm-reduction effects, at least in part, through their beneficial actions across the MGBA.

This review will provide a brief introduction to the ECS and the MGBA, discuss the effects of cannabinoids (particularly CBD) and alcohol in the brain, gut, and immune system (i.e., across the MGBA), and put forth a theoretical framework to inform future research questions.”

https://www.ncbi.nlm.nih.gov/pubmed/31803950

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14256

Influence of the CB1 and CB2 cannabinoid receptor ligands on the activity of atypical antidepressant drugs in the behavioural tests in mice.

Pharmacology Biochemistry and Behavior“Available data support the notion that cannabinoids, whose therapeutic value is limited due to severe adverse reactions, could be beneficial as adjunctive agents in the management of mood disorders.

Polytherapy, which is superior to monotherapy in the terms of effectiveness, usually requires lower doses of the individual components. Therefore, the main objective of our study was to determine whether administration of cannabinoid (CB) receptor ligands would enhance the antidepressant activity of atypical antidepressant drugs, i.e. agomelatine and tianeptine.

In summary, the outcomes of the present study showed that activation and inhibition of CB1 receptors as well as inhibition of CB2 receptors may increase the antidepressant activity of tianeptine, whereas only inhibition of CB1 and CB2 receptors has a potential to augment the antidepressant activity of agomelatine.”

https://www.ncbi.nlm.nih.gov/pubmed/31785246

https://www.sciencedirect.com/science/article/pii/S0091305719304873?via%3Dihub

Marijuana Use in Patients with Symptoms of Gastroparesis: Prevalence, Patient Characteristics, and Perceived Benefit.

“Marijuana may be used by some patients with gastroparesis (Gp) for its potential antiemetic, orexigenic, and pain-relieving effects.

The aim of this study was to describe the use of marijuana by patients for symptoms of Gp, assessing prevalence of use, patient characteristics, and patients’ perceived benefit on their symptoms of Gp.

RESULTS:

Fifty-nine of 506 (11.7%) patients with symptoms of Gp reported current marijuana use, being similar among patients with delayed and normal gastric emptying and similar in idiopathic and diabetic patients. Patients using marijuana were younger, more often current tobacco smokers, less likely to be a college graduate, married or have income > $50,000. Patients using marijuana had higher nausea/vomiting subscore (2.7 vs 2.1; p = 0.002), higher upper abdominal pain subscore (3.5 vs 2.9; p = 0.003), more likely to be using promethazine (37 vs 25%; p = 0.05) and dronabinol (17 vs 3%; p < 0.0001). Of patients using marijuana, 51% had been using it for more than 2 years, 47% were using this once or more per day, and 81% of marijuana users rated their benefit from marijuana as better or much better.

CONCLUSIONS:

A subset of patients (12%) with symptoms of Gp use marijuana. Patients with severe nausea and abdominal pain were more likely to use marijuana and perceive it to be beneficial for their symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/31758430

https://link.springer.com/article/10.1007%2Fs10620-019-05963-2

“Marijuana, Ondansetron, and Promethazine Are Perceived as Most Effective Treatments for Gastrointestinal Nausea”

https://pubmed.ncbi.nlm.nih.gov/32185665/

A role for cannabinoids in the treatment of myotonia? Report of compassionate use in a small cohort of patients.

“The symptomatic treatment of myotonia and myalgia in patients with dystrophic and non-dystrophic myotonias is often not satisfactory.

Some patients anecdotally report symptoms’ relief through consumption of cannabis.

METHODS:

A combination of cannabidiol and tetrahydrocannabinol (CBD/THC) was prescribed as compassionate use to six patients (four patients with myotonic dystrophy types 1 and 2, and 2 patients with CLCN1-myotonia) with therapy-resistant myotonia and myalgia. CBD/THC oil was administered on a low dose in the first 2 weeks and adjusted to a higher dose in the following 2 weeks. Myotonia behaviour scale (MBS), hand-opening time, visual analogue scales (VAS) for myalgia and myotonia, and fatigue and daytime sleepiness severity scale (FSS, ESS) were performed weekly to monitor treatment response.

RESULTS:

All patients reported an improvement of myotonia especially in weeks 3 and 4 of treatment: MBS improved of at least 2 points in all patients, the hand-opening time variously improved in 5 out of 6 patients. Chronic myalgia was reported by both DM2 patients at baseline, one of them experienced a significant improvement of myalgia under treatment. Some gastrointestinal complaints, as abdominal pain and diarrhoea, improved in 3 patients; however, 4 out of 6 patients reported new-onset constipation. No other relevant side effect was noticed.

CONCLUSIONS:

These first empirical results suggest a potentially beneficial role of CBD/THC in alleviating myotonia and should encourage further research in this field including a randomized-controlled trial on larger cohorts.”

https://www.ncbi.nlm.nih.gov/pubmed/31655890

https://link.springer.com/article/10.1007%2Fs00415-019-09593-6

“Myotonia is a medical term that refers to a neuromuscular condition in which the relaxation of a muscle is impaired.” https://www.ninds.nih.gov/Disorders/All-Disorders/Myotonia-Information-Page

New approaches to cancer therapy: combining Fatty Acid Amide Hydrolase (FAAH) inhibition with Peroxisome Proliferator-Activated Receptors (PPARs) activation.

 Go to Volume 0, Issue ja“Over the course of the last decade, Peroxisome Proliferator-Activated Receptors (PPARs) have been identified as part of the cannabinoid signaling system: both phytocannabinoids and endocannabinoids are capable of binding and activating these nuclear receptors. Fatty Acid Amide Hydrolase (FAAH) hydrolyzes the endocannabinoid Anandamide and other N-Acylethanolamines. These substances have been shown to have numerous anti-cancer effects, and indeed the inhibition of FAAH has multiple beneficial effects that are mediated by PPARα subtype and by PPARγ subtype, especially antiproliferation and activation of apoptosis. The substrates of FAAH are also PPAR agonists, which explains the PPAR-mediated effects of FAAH inhibitors. Much like cannabinoid ligands and FAAH inhibitors, PPARγ agonists show antiproliferative effects on cancer cells, suggesting that additive or synergistic effects may be achieved through the positive modulation of both signaling systems. In this perspective, we discuss the development of novel FAAH inhibitors able to directly act as PPAR agonists and their promising utilization as leads for the discovery of highly effective anti-cancer compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/31407888

https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b00885