Cannabinoids, inflammation, and fibrosis.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (CT-3, AJA; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

http://www.ncbi.nlm.nih.gov/pubmed/27435265

Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

“delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.”

http://www.ncbi.nlm.nih.gov/pubmed/3601007

Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L.

“Chemical investigation of the pollen grain collected from male plants of Cannabis sativa L. resulted in the isolation for the first time of two flavonol glycosides from the methanol extract, and the identification of 16 cannabinoids in the hexane extract. The two glycosides were identified as kaempferol 3-O-sophoroside and quercetin 3-O-sophoroside by spectroscopic methods including high-field two-dimensional NMR experiments. The characterisation of each cannabinoid was performed by GC-FID and GC-MS analyses and by comparison with both available reference cannabinoids and reported data. The identified cannabinoids were delta9-tetrahydrocannabiorcol, cannabidivarin, cannabicitran, delta9-tetrahydrocannabivarin, cannabicyclol, cannabidiol, cannabichromene, delta9-tetrahydrocannabinol, cannabigerol, cannabinol, dihydrocannabinol, cannabielsoin, 6a, 7, 10a-trihydroxytetrahydrocannabinol, 9, 10-epoxycannabitriol, 10-O-ethylcannabitriol, and 7, 8-dehydro-10-O-ethylcannabitriol.”

http://www.ncbi.nlm.nih.gov/pubmed/15688956

Thermal isomerization of cannabinoid analogues.

“Thermal isomerization of CBC(an) to THC(an) [nonaromatic analogues of plant cannabinoids cannabichromene (CBC) and Delta(1)-tetrahydrocannabinol (THC), respectively] is predicted in silico and demonstrated experimentally. Density functional theory calculations support a similar isomerization mechanism for the corresponding plant cannabinoids. Docking studies suggest that THC(an), although nonaromatic, has a CB(1) receptor binding affinity similar to that of natural THC.”

http://www.ncbi.nlm.nih.gov/pubmed/19919138

Cannabichromene and tetrahydrocannabinol determination in mouse blood and brain by gas chromatography-mass spectrometry.

“Cannabichromene (CBC) is a phytocannabinoid, the second most abundant cannabinoid quantitatively in marijuana. CBC has been shown to produce antinociception and anti-inflammatory effects…”

 http://www.ncbi.nlm.nih.gov/pubmed/21871159

The effect of cannabichromene on adult neural stem/progenitor cells.

“Apart from the psychotropic compound Δ(9)-tetrahydrocannabinol (THC), evidence suggests that other non-psychotropic phytocannabinoids are also of potential clinical use.

This study aimed at elucidating the effect of major non-THC phytocannabinoids on the fate of adult neural stem progenitor cells (NSPCs), which are an essential component of brain function in health as well as in pathology.

We tested three compounds: cannabidiol, cannabigerol, and cannabichromene (CBC), and found that CBC has a positive effect on the viability of mouse NSPCs during differentiation in vitro.

Taken together, our results suggest that CBC raises the viability of NSPCs while inhibiting their differentiation into astroglia, possibly through up-regulation of ATP and adenosine signalling.”

http://www.ncbi.nlm.nih.gov/pubmed/23941747

Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action.

“Two non-psychoactive cannabinoids, cannabidiol (CBD) and cannabichromene (CBC), are known to modulate in vitro the activity of proteins involved in nociceptive mechanisms, including transient receptor potential (TRP) channels of vanilloid type-1 (TRPV1) and of ankyrin type-1 (TRPA1), the equilibrative nucleoside transporter and proteins facilitating endocannabinoid inactivation. Here we have tested these two cannabinoids on the activity of the descending pathway of antinociception…

CONCLUSIONS AND IMPLICATIONS:

CBD and CBC stimulated descending pathways of antinociception and caused analgesia by interacting with several target proteins involved in nociceptive control.

These compounds might represent useful therapeutic agents with multiple mechanisms of action.”

http://www.ncbi.nlm.nih.gov/pubmed/20942863

The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis.

“The non-psychotropic cannabinoid cannabichromene is known to activate the transient receptor potential ankyrin-type1 (TRPA1) and to inhibit endocannabinoid inactivation, both of which are involved in inflammatory processes. We examined here the effects of this phytocannabinoid on peritoneal macrophages and its efficacy in an experimental model of colitis…

CONCLUSION AND IMPLICATIONS:

Cannabichromene exerts anti-inflammatory actions in activated macrophages – with tonic CB1 cannabinoid signalling being negatively coupled to this effect – and ameliorates experimental murine colitis.”

http://www.ncbi.nlm.nih.gov/pubmed/23373571

Pot is good for you? Marijuana fights the superbugs

Antibacterial cannabinoids from Cannabis sativa: a structure-activity study.

Journal of Natural Products

“Marijuana (Cannabis sativa) has long been known to contain antibacterial cannabinoids, whose potential to address antibiotic resistance has not yet been investigated. All five major cannabinoids (cannabidiol (1b), cannabichromene (2), cannabigerol (3b), Delta (9)-tetrahydrocannabinol (4b), and cannabinol (5)) showed potent activity against a variety of methicillin-resistant Staphylococcus aureus (MRSA) strains of current clinical relevance.

Activity was remarkably tolerant to the nature of the prenyl moiety, to its relative position compared to the n-pentyl moiety (abnormal cannabinoids), and to carboxylation of the resorcinyl moiety (pre-cannabinoids). Conversely, methylation and acetylation of the phenolic hydroxyls, esterification of the carboxylic group of pre-cannabinoids, and introduction of a second prenyl moiety were all detrimental for antibacterial activity.

Taken together, these observations suggest that the prenyl moiety of cannabinoids serves mainly as a modulator of lipid affinity for the olivetol core, a per se poorly active antibacterial pharmacophore, while their high potency definitely suggests a specific, but yet elusive, mechanism of activity.” http://www.ncbi.nlm.nih.gov/pubmed/18681481

“Antibacterial Cannabinoids from Cannabis sativa: A Structure−Activity Study”  http://pubs.acs.org/doi/abs/10.1021/np8002673