Cannabinoids and spinal cord stimulation for the treatment of failed back surgery syndrome refractory pain

Image result for dovepress

“This study aimed to evaluate pain and its symptoms in patients with failed back surgery syndrome (FBSS) refractory to other therapies, treated with a combination of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), in association with spinal cord stimulation (SCS).

Results: Effective pain management as compared to baseline result was achieved in all the cases studied. The positive effect of cannabinoid agonists on refractory pain was maintained during the entire duration of treatment with minimal dosage titration. Pain perception, evaluated through numeric rating scale, decreased from a baseline mean value of 8.18±1.07–4.72±0.9 by the end of the study duration (12 months) (P<0.001).

Conclusion: The results indicate that cannabinoid agonists (THC/CBD) can have remarkable analgesic capabilities, as adjuvant of SCS, for the treatment of chronic refractory pain of FBSS patients.”

https://www.ncbi.nlm.nih.gov/pubmed/30233233

https://www.dovepress.com/cannabinoids-and-spinal-cord-stimulation-for-the-treatment-of-failed-b-peer-reviewed-article-JPR

“Outcomes indicate remarkable analgesic capabilities of cannabinoid agonists (THC/CBD) as an adjuvant to SCS for treating chronic refractory pain in FBSS patients, since all the cases studied achieved effective pain management compared to baseline.”

https://www.mdlinx.com/journal-summaries/cannabinoids-delta-9-tetrahydrocannabinol-thc-cannabidiol/2018/09/13/7544234/

Effect of cannabidiolic acid and ∆9-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain.

“Cannabidiol (CBD), a non-intoxicating component of cannabis, or the psychoactive Δ9-tetrahydrocannabiol (THC), shows anti-hyperalgesia and anti-inflammatory properties.

OBJECTIVES:

The present study evaluates the anti-inflammatory and anti-hyperalgesia effects of CBD’s potent acidic precursor, cannabidiolic acid (CBDA), in a rodent model of carrageenan-induced acute inflammation in the rat hind paw, when administered systemically (intraperitoneal, i.p.) or orally before and/or after carrageenan. In addition, we assess the effects of oral administration of THC or CBDA, their mechanism of action, and the efficacy of combined ineffective doses of THC and CBDA in this model. Finally, we compare the efficacy of CBD and CBDA.

RESULTS:

CBDA given i.p. 60 min prior to carrageenan (but not 60 min after carrageenan) produced dose-dependent anti-hyperalgesia and anti-inflammatory effects. In addition, THC or CBDA given by oral gavage 60 min prior to carrageenan produced anti-hyperalgesia effects, and THC reduced inflammation. The anti-hyperalgesia effects of THC were blocked by SR141716 (a cannabinoid 1 receptor antagonist), while CBDA’s effects were blocked by AMG9810 (a transient receptor potential cation channel subfamily V member 1 antagonist). In comparison to CBDA, an equivalent low dose of CBD did not reduce hyperalgesia, suggesting that CBDA is more potent than CBD for this indication. Interestingly, when ineffective doses of CBDA or THC alone were combined, this combination produced an anti-hyperalgesia effect and reduced inflammation.

CONCLUSION:

CBDA or THC alone, as well as very low doses of combined CBDA and THC, has anti-inflammatory and anti-hyperalgesia effects in this animal model of acute inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30225659

https://link.springer.com/article/10.1007%2Fs00213-018-5034-1

Benefits and Risks of Therapeutic Cannabinoids for Neurologic Disorders

Clinical Therapeutics Home

“The Cannabis genus originated in Central Asia and is probably one of the most ancient nonfood crops to be cultivated by humans. Its medicinal properties have been recognized for centuries. Isolation of the psychoactive compound, Δ9-tetrahydrocannabinol, followed by the identification of cannabidiol, led to increased focus on the therapeutic potential of the plant. One of the prominent species, Cannabis sativa, may produce more than 100 different cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/30224192

https://www.clinicaltherapeutics.com/article/S0149-2918(18)30331-X/fulltext

Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor.

Image result for molecular brain journal

“Cannabidiol (CBD), the major non-psychotomimetic compound present in the Cannabis sativa plant, exhibits therapeutic potential for various human diseases, including chronic neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, ischemic stroke, epilepsy and other convulsive syndromes, neuropsychiatric disorders, neuropathic allodynia and certain types of cancer.

CBD does not bind directly to endocannabinoid receptors 1 and 2, and despite research efforts, its specific targets remain to be fully identified. Notably, sigma 1 receptor (σ1R) antagonists inhibit glutamate N-methyl-D-aspartate acid receptor (NMDAR) activity and display positive effects on most of the aforesaid diseases. Thus, we investigated the effects of CBD on three animal models in which NMDAR overactivity plays a critical role: opioid analgesia attenuation, NMDA-induced convulsive syndrome and ischemic stroke.

In an in vitro assay, CBD disrupted the regulatory association of σ1R with the NR1 subunit of NMDAR, an effect shared by σ1R antagonists, such as BD1063 and progesterone, and prevented by σ1R agonists, such as 4-IBP, PPCC and PRE084. The in vivo administration of CBD or BD1063 enhanced morphine-evoked supraspinal antinociception, alleviated NMDA-induced convulsive syndrome, and reduced the infarct size caused by permanent unilateral middle cerebral artery occlusion.

These positive effects of CBD were reduced by the σ1R agonists PRE084 and PPCC, and absent in σ1R-/- mice. Thus, CBD displays antagonist-like activity toward σ1R to reduce the negative effects of NMDAR overactivity in the abovementioned experimental situations.”

https://www.ncbi.nlm.nih.gov/pubmed/30223868

https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-018-0395-2

Cannabidiol prevents haloperidol-induced vacuos chewing movements and inflammatory changes in mice via PPARγ receptors.

Brain, Behavior, and Immunity

“The chronic use of drugs that reduce the dopaminergic neurotransmission can cause a hyperkinetic movement disorder called tardive dyskinesia (TD). The pathophysiology of this disorder is not entirely understood but could involve oxidative and neuroinflammatory mechanisms.

Cannabidiol (CBD), the major non-psychotomimetic compound present in Cannabis sativa plant, could be a possible therapeutic alternative for TD. This phytocannabinoid shows antioxidant, anti-inflammatory and antipsychotic properties and decreases the acute motor effects of classical antipsychotics.

The present study investigated if CBD would attenuate orofacial dyskinesia, oxidative stress and inflammatory changes induced by chronic administration of haloperidol in mice. Furthermore, we verified in vivo and in vitro (in primary microglial culture) whether these effects would be mediated by PPARγ receptors.

The results showed that the male Swiss mice treated daily for 21 days with haloperidol develop orofacial dyskinesia. Daily CBD administration before each haloperidol injection prevented this effect.

Mice treated with haloperidol showed an increase in microglial activation and inflammatory mediators in the striatum. These changes were also reduced by CBD. On the other hand, the levels of the anti-inflammatory cytokine IL-10 increased in the striatum of animals that received CBD and haloperidol.

Regarding oxidative stress, haloperidol induced lipid peroxidation and reduced catalase activity. This latter effect was attenuated by CBD. The combination of CBD and haloperidol also increased PGC-1α mRNA expression, a co-activator of PPARγ receptors. Pretreatment with the PPARγ antagonist, GW9662, blocked the behavioural effect of CBD in our TD model. CBD also prevented LPS-stimulated microglial activation, an effect that was also antagonized by GW9662.

In conclusion, our results suggest that CBD could prevent haloperidol-induced orofacial dyskinesia by activating PPARγ receptors and attenuating neuroinflammatory changes in the striatum.”

“Haloperidol, marketed under the trade name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the treatment of schizophrenia, tics in Tourette syndromemania in bipolar disorder, nausea and vomiting, delirium, agitation, acute psychosis, and hallucinations in alcohol withdrawal”  https://en.wikipedia.org/wiki/Haloperidol

Inhibitory effects of cannabidiol on voltage-dependent sodium currents.

Image result for jbc journal

“Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and non-psychoactive compounds are Δ9-tetrahydrocannabidiol (THC) and cannabidiol (CBD), respectively.

Much of the evidence for clinical efficacy of CBD-mediated anti-epileptic effects has been from case reports or smaller surveys. The mechanisms for CBD’s anticonvulsant effects are unclear and likely involve non-cannabinoid receptor pathways.

CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels.

Our results show that CBD inhibits hNav1.1-1.7 currents, with an IC50 of 1.9-3.8 μM, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ~3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures.

We conclude that CBD’s mode of action likely involves (1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and (2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.”

https://www.ncbi.nlm.nih.gov/pubmed/30219789

http://www.jbc.org/content/early/2018/09/14/jbc.RA118.004929

Oral cannabinoid-rich THC/CBD cannabis extract for secondary prevention of chemotherapy-induced nausea and vomiting: a study protocol for a pilot and definitive randomised double-blind placebo-controlled trial (CannabisCINV).

BMJ Journals

“Chemotherapy-induced nausea and vomiting (CINV) remains an important issue for patients receiving chemotherapy despite guideline-consistent antiemetic therapy. Trials using delta-9-tetrahydrocannabinol-rich (THC) products demonstrate limited antiemetic effect, significant adverse events and flawed study design. Trials using cannabidiol-rich (CBD) products demonstrate improved efficacy and psychological adverse event profile. No definitive trials have been conducted to support the use of cannabinoids for this indication, nor has the potential economic impact of incorporating such regimens into the Australian healthcare system been established. CannabisCINV aims to assess the efficacy, safety and cost-effectiveness of adding TN-TC11M, an oral THC/CBD extract to guideline-consistent antiemetics in the secondary prevention of CINV.

METHODS AND ANALYSIS:

The current multicentre, 1:1 randomised cross-over, placebo-controlled pilot study will recruit 80 adult patients with any malignancy, experiencing CINV during moderate to highly emetogenic chemotherapy despite guideline-consistent antiemetics. Patients receive oral TN-TC11M (THC 2.5mg/CBD 2.5 mg) capsules or placebo capsules three times a day on day -1 to day 5 of cycle A of chemotherapy, followed by the alternative drug regimen during cycle B of chemotherapy and the preferred drug regimen during cycle C. The primary endpoint is the proportion of subjects attaining a complete response to CINV. Secondary and tertiary endpoints include regimen tolerability, impact on quality of life and health system resource use. The primary assessment tool is patient diaries, which are filled from day -1 to day 5. A subsequent randomised placebo-controlled parallel phase III trial will recruit a further 250 patients.

ETHICS AND DISSEMINATION:

The protocol was approved by ethics review committees for all participating sites. Results will be disseminated in peer-reviewed journals and at scientific conferences.”

https://www.ncbi.nlm.nih.gov/pubmed/30209152

https://bmjopen.bmj.com/content/8/9/e020745

Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation.

Image result for aps acta pharmacologica

“With treatment benefits in both the central nervous system and the peripheral system, the medical use of cannabidiol (CBD) has gained increasing popularity.

Given that the therapeutic mechanisms of CBD are still vague, the systematic identification of its potential targets, signaling pathways, and their associations with corresponding diseases is of great interest for researchers.

In the present work, chemogenomics-knowledgebase systems pharmacology analysis was applied for systematic network studies to generate CBD-target, target-pathway, and target-disease networks by combining both the results from the in silico analysis and the reported experimental validations.

Based on the network analysis, three human neuro-related rhodopsin-like GPCRs, i.e., 5-hydroxytryptamine receptor 1 A (5HT1A), delta-type opioid receptor (OPRD) and G protein-coupled receptor 55 (GPR55), were selected for close evaluation. Integrated computational methodologies, including homology modeling, molecular docking, and molecular dynamics simulation, were used to evaluate the protein-CBD binding modes. A CBD-preferred pocket consisting of a hydrophobic cavity and backbone hinges was proposed and tested for CBD-class A GPCR binding.

Finally, the neurophysiological effects of CBD were illustrated at the molecular level, and dopamine receptor 3 (DRD3) was further predicted to be an active target for CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30202014

https://www.nature.com/articles/s41401-018-0071-1

Cannabis for the Treatment of Epilepsy: an Update.

“For millennia, there has been interest in the use of cannabis for the treatment of epilepsy.

However, it is only recently that appropriately powered controlled studies have been completed. In this review, we present an update on the research investigating the use of cannabidiol (CBD), a non-psychoactive component of cannabis, in the treatment of epilepsy.

While the anticonvulsant mechanism of action of CBD has not been entirely elucidated, we discuss the most recent data available including its low affinity for the endocannabinoid receptors and possible indirect modulation of these receptors via blocking the breakdown of anandamide.

Additional targets include activation of the transient receptor potential of vanilloid type-1 (TRPV1), antagonist action at GPR55, targeting of abnormal sodium channels, blocking of T-type calcium channels, modulation of adenosine receptors, modulation of voltage-dependent anion selective channel protein (VDAC1), and modulation of tumor necrosis factor alpha release.

We also discuss the most recent studies on various artisanal CBD products conducted in patients with epilepsy in the USA and internationally. While a high percentage of patients in these studies reported improvement in seizures, these studies were either retrospective or conducted via survey. Dosage/preparation of CBD was either unknown or not controlled in the majority of these studies.

Finally, we present data from both open-label expanded access programs (EAPs) and randomized placebo-controlled trials (RCTs) of a highly purified oral preparation of CBD, which was recently approved by the FDA in the treatment of epilepsy.

In the EAPs, there was a significant improvement in seizure frequency seen in a large number of patients with various types of treatment-refractory epilepsy. The RCTs have shown significant seizure reduction compared to placebo in patients with Dravet syndrome and Lennox-Gastaut syndrome. Finally, we describe the available data on adverse effects and drug-drug interactions with highly purified CBD.

While this product is overall well tolerated, the most common side effects are diarrhea and sedation, with sedation being much more common in patients taking concomitant clobazam. There was also an increased incidence of aspartate aminotransferase and alanine aminotransferase elevations while taking CBD, with many of the patients with these abnormalities also taking concomitant valproate. CBD has a clear interaction with clobazam, significantly increasing the levels of its active metabolite N-desmethylclobazam in several studies; this is felt to be due to CBD’s inhibition of CYP2C19. EAP data demonstrate other possible interactions with rufinamide, zonisamide, topiramate, and eslicarbazepine. Additionally, there is one case report demonstrating need for warfarin dose adjustment with concomitant CBD.

Understanding of CBD’s efficacy and safety in the treatment of TRE has expanded significantly in the last few years. Future controlled studies of various ratios of CBD and THC are needed as there could be further therapeutic potential of these compounds for patients with epilepsy.”

Targeting Glioma Initiating Cells With A Combined Therapy Of Cannabinoids And Temozolomide.

Biochemical Pharmacology

“Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor due, at least in part, to its poor response to current anticancer treatments. These features could be explained, at least partially, by the presence within the tumor mass of a small population of cells termed Glioma Initiating Cells (GICs) that has been proposed to be responsible for the relapses occurring in this disease. Thus, the development of novel therapeutic approaches (and specifically those targeting the population of GICs) is urgently needed to improve the survival of the patients suffering this devastating disease.

Previous observations by our group and others have shown that Δ9-Tetrahydrocannabinol (THC, the main active ingredient of marijuana) and other cannabinoids including cannabidiol (CBD) exert antitumoral actions in several animal models of cancer, including gliomas.

We also found that the administration of THC (or of THC + CBD at a 1:1 ratio) in combination with temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

In this work we investigated the effect of the combination of TMZ and THC:CBD mixtures containing different ratios of the two cannabinoids in preclinical glioma models, including those derived from GICs.

Our findings show that TMZ + THC:CBD combinations containing a higher proportion of CDB (but not TMZ + CBD alone) produce a similar antitumoral effect as the administration of TMZ together with THC and CBD at a 1:1 ratio in xenografts generated with glioma cell lines. In addition, we also found that the administration of TMZ + THC:CBD at a 1:1 ratio reduced the growth of orthotopic xenografts generated with GICs derived from GBM patients and enhanced the survival of the animals bearing these intracranial xenografts.

Remarkably, the antitumoral effect observed in GICs-derived xenografts was stronger when TMZ was administered together with cannabinoid combinations containing a higher proportion of CBD. These findings support the notion that the administration of TMZ together with THC:CBD combinations – and specifically those containing a higher proportion of CBD – may be therapeutically explored to target the population of GICs in GBM.”