Cannabidiol does not display drug abuse potential in mice behavior.

Image result for aps acta pharmacologica

“Recent evidence suggests that cannabidiol (CBD) may be useful for the treatment of different neuropsychiatric disorders.

However, some controversy regarding its profile as a drug of abuse hampers the further development of basic and clinical studies.

In this study, the behavioral profile of CBD as a potential drug of abuse was evaluated in C57BL/6J mice.

Taken together, these results show that CBD lacks activity as a drug of abuse and should stimulate the development of the basic and clinical studies needed to elucidate its potential therapeutic use for the treatment of neuropsychiatric and drug use disorders.”

[Should ophtalmologists recommend medical cannabis to patients with glaucoma?]

 Image result for ugeskr laeger

“Cannabis has been widely used for various medical purposes since before year 2000 BC. Its effects are mediated by cannabinoids and stimulation of mainly G-protein coupled cannabinoid receptors.

In 1971, subjects who smoked marihuana, showed a decrease in the intraocular pressure.

Later investigations additionally revealed a neuroprotective effect of both ∆-9-tetrahydrocannabinol and cannabidiol (CBD).

Furthermore, CBD was found to promote neurogenesis. The aim of this review is to provide an overview of the potential use of cannabinoids in the treatment of glaucoma.”

https://www.ncbi.nlm.nih.gov/pubmed/30020072

A Cross-Sectional Study of Cannabidiol Users.

Cannabis and Cannabinoid Research cover image

“Introduction: Preclinical and clinical studies suggest that cannabidiol (CBD) found in Cannabis spp. has broad therapeutic value. CBD products can currently be purchased online, over the counter and at Cannabis-specific dispensaries throughout most of the country, despite the fact that CBD is generally deemed a Schedule I controlled substance by the U.S. Drug Enforcement Administration and renounced as a dietary supplement ingredient by the U.S. Food and Drug Administration. Consumer demand for CBD is high and growing, but few studies have examined the reasons for increasing CBD use.

Results: Almost 62% of CBD users reported using CBD to treat a medical condition. The top three medical conditions were pain, anxiety, and depression. Almost 36% of respondents reported that CBD treats their medical condition(s) “very well by itself,” while only 4.3% reported “not very well.” One out of every three users reported a nonserious adverse effect. The odds of using CBD to treat a medical condition were 1.44 (95% confidence interval, 1.16-1.79) times greater among nonregular users of Cannabis than among regular users.

Conclusion: Consumers are using CBD as a specific therapy for multiple diverse medical conditions-particularly pain, anxiety, depression, and sleep disorders. These data provide a compelling rationale for further research to better understand the therapeutic potential of CBD.”

Novel mechanism of cannabidiol-induced apoptosis in breast cancer cell lines.

The Breast Home

“Studies have emphasized an antineoplastic effect of the non-psychoactive, phyto-cannabinoid, Cannabidiol (CBD). However, the molecular mechanism underlying its antitumor activity is not fully elucidated.

Herein, we have examined the effect of CBD on two different human breast cancer cell lines: the ER-positive, well differentiated, T-47D and the triple negative, poor differentiated, MDA-MB-231 cells.

In both cell lines, CBD inhibited cell survival and induced apoptosis in a dose dependent manner as observed by MTT assay, morphological changes, DNA fragmentation and ELISA apoptosis assay. CBD-induced apoptosis was accompanied by down-regulation of mTOR, cyclin D1 and up-regulation and localization of PPARγ protein expression in the nuclei and cytoplasmic of the tested cells.

The results suggest that CBD treatment induces an interplay among PPARγ, mTOR and cyclin D1 in favor of apoptosis induction in both ER-positive and triple negative breast cancer cells, proposing CBD as a useful treatment for different breast cancer subtypes.”

“Programmed Cell Death (Apoptosis)” http://www.ncbi.nlm.nih.gov/books/NBK26873/

Open-label use of Highly* purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes.

“We studied our collective open-label, compassionate use experience in using cannabidiol (CBD) to treat epilepsy in patients with CDKL5 deficiency disorder and Aicardi, Doose, and Dup15q syndromes. This open-label drug trial provides class III evidence for the long-term safety and efficacy of cannabidiol (CBD) administration in patients with treatment-resistant epilepsy (TRE) associated with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Adjuvant therapy with CBD showed similar safety and efficacy for these four syndromes as reported in a diverse population of TRE etiologies.” https://www.ncbi.nlm.nih.gov/pubmed/30006259 https://www.epilepsybehavior.com/article/S1525-5050(18)30191-4/fulltext

“Medical cannabis for epilepsy approved in FDA first”  https://www.medicalnewstoday.com/articles/322283.php

Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: Expanded access program results.

Epilepsia banner

“Since 2014, cannabidiol (CBD) has been administered to patients with treatment-resistant epilepsies (TREs) in an ongoing expanded-access program (EAP). We report interim results on the safety and efficacy of CBD in EAP patients treated through December 2016.

METHODS:

Twenty-five US-based EAP sites enrolling patients with TRE taking stable doses of antiepileptic drugs (AEDs) at baseline were included. During the 4-week baseline period, parents/caregivers kept diaries of all countable seizure types. Patients received oral CBD starting at 2-10 mg/kg/d, titrated to a maximum dose of 25-50 mg/kg/d. Patient visits were every 2-4 weeks through 16 weeks and every 2-12 weeks thereafter. Efficacy endpoints included the percentage change from baseline in median monthly convulsive and total seizure frequency, and percentage of patients with ≥50%, ≥75%, and 100% reductions in seizures vs baseline. Data were analyzed descriptively for the efficacy analysis set and using the last-observation-carried-forward method to account for missing data. Adverse events (AEs) were documented at each visit.

RESULTS:

Of 607 patients in the safety dataset, 146 (24%) withdrew; the most common reasons were lack of efficacy (89 [15%]) and AEs (32 [5%]). Mean age was 13 years (range, 0.4-62). Median number of concomitant AEDs was 3 (range, 0-10). Median CBD dose was 25 mg/kg/d; median treatment duration was 48 weeks. Add-on CBD reduced median monthly convulsive seizures by 51% and total seizures by 48% at 12 weeks; reductions were similar through 96 weeks. Proportion of patients with ≥50%, ≥75%, and 100% reductions in convulsive seizures were 52%, 31%, and 11%, respectively, at 12 weeks, with similar rates through 96 weeks. CBD was generally well tolerated; most common AEs were diarrhea (29%) and somnolence (22%).

SIGNIFICANCE:

Results from this ongoing EAP support previous observational and clinical trial data showing that add-on CBD may be an efficacious long-term treatment option for TRE.”

https://www.ncbi.nlm.nih.gov/pubmed/29998598

https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.14477

Composition and Use of Cannabis Extracts for Childhood Epilepsy in the Australian Community

Scientific Reports

“Recent surveys suggest that many parents are using illicit cannabis extracts in the hope of managing seizures in their children with epilepsy. In the current Australian study we conducted semi-structured interviews with families of children with diverse forms of epilepsy to explore their attitudes towards and experiences with using cannabis extracts.

Contrary to family’s expectations, most samples contained low concentrations of cannabidiol, while Δ9-tetrahydrocannabinol was present in nearly every sample. These findings highlight profound variation in the illicit cannabis extracts being currently used in Australia and warrant further investigations into the therapeutic value of cannabinoids in epilepsy.

The phenomenon is not without supporting scientific evidence. Many preclinical studies have identified potent anticonvulsant effects of various cannabinoids in animal models of epilepsy, and a mechanistic understanding of such effects is emerging.

A considerable proportion of families reported cannabis extracts being “effective” in reducing their child’s seizure burden and improving their overall condition, with one family reporting seizure-freedom in their child for at least 12 months. Over half of the cannabis extracts were associated with families reducing or ceasing their use of the child’s conventional antiepileptic drugs.”

https://www.nature.com/articles/s41598-018-28127-0

“Cannabis chemical THC could be missing ‘piece to the puzzle’ in treating kids with epilepsy” http://www.abc.net.au/news/2018-07-05/epilepsy-treatment-cannabis-chemical-thc/9944878

The protocol for the Cannabidiol in children with refractory epileptic encephalopathy (CARE-E) study: a phase 1 dosage escalation study.

Image result for bmc pediatrics

“Initial studies suggest pharmaceutical grade cannabidiol (CBD) can reduce the frequency of convulsive seizures and lead to improvements in quality of life in children affected by epileptic encephalopathies.

With limited access to pharmaceutical CBD, Cannabis extracts in oil are becoming increasingly available.

The primary aims of the study presented in this protocol are (i) To determine whether CBD enriched Cannabis extract is safe and well-tolerated for pediatric patients with refractory epilepsy, (ii) To monitor the effects of CBD-enriched Cannabis extract on the frequency and duration of seizure types and on quality of life.

DISCUSSION:

This paper describes the study design of a phase 1 trial of CBD-enriched Cannabis herbal extract in children with treatment-resistant epileptic encephalopathy. This study will provide the first high quality analysis of safety of CBD-enriched Cannabis herbal extract in pediatric patients in relation to dosage and pharmacokinetics of the active cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/29981580

“Children with epileptic encephalopathies resistant to standard therapy are at considerable risk for long-term neurocognitive impairment and poor quality of life. CBD-enriched Cannabis based therapies have been shown in several studies to provide a reduction in seizure frequencies and improvements in sleep patterns, mood, and alertness.”  https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-018-1191-y

Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors.

British Journal of Pharmacology banner

“We sought to understand why (-)-cannabidiol (CBD) and (-)-cannabidiol-dimethylheptyl (CBD-DMH) exhibit distinct pharmacology, despite near identical structures.

KEY RESULTS:

At CB1R, CBD was a negative allosteric modulator (NAM) and CBD-DMH was a mixed agonist/positive allosteric modulator. CBD and Org27569 shared multiple interacting residues in the antagonist-bound model of CB1R (5TGZ), but shared a binding site with CP55,940 in the agonist-bound model of CB1R (5XRA). The binding site for CBD-DMH in the CB1R models overlapped with CP55,940 and Org27569. At CB2R, CBD was a partial agonist, and CBD-DMH was a positive allosteric modulator of cAMP modulation, but a NAM of βarrestin1 recruitment. CBD, CP55,940, and SR144528 shared a binding site in the CB2R models that was separate from CBD-DMH.

CONCLUSION AND IMPLICATIONS:

The pharmacological activity of CBD and CBD-DMH in HEK293A cells and their modelled binding sites at CB1R and CB2R may explain their in vivo effects and illuminates the difficulties associated with the development of allosteric modulators for CB1R and CB2R.”

https://www.ncbi.nlm.nih.gov/pubmed/29981240

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14440

Hippocampal mammalian target of rapamycin is implicated in stress-coping behavior induced by cannabidiol in the forced swim test.

Image result for journal of psychopharmacology

“Cannabidiol is a non-psychotomimetic compound with antidepressant-like effects.

However, the mechanisms and brain regions involved in cannabidiol effects are not yet completely understood. Brain-derived neurotrophic factor/tropomyosin-receptor kinase B/mammalian target of rapamycin (BDNF-TrkB-mTOR) signaling, especially in limbic structures, seems to play a central role in mediating the effects of antidepressant drugs.

RESULTS:

Systemic cannabidiol administration induced antidepressant-like effects and increased BDNF levels in the dorsal hippocampus. Rapamycin, but not K252a, injection into the dorsal hippocampus prevented the antidepressant-like effect induced by systemic cannabidiol treatment (10 mg/kg). Differently, hippocampal administration of cannabidiol (10 nmol/0.2 µL) reduced immobility time, an effect that was blocked by both rapamycin and K252a local microinjection.

CONCLUSION:

Altogether, our data suggest that the hippocampal BDNF-TrkB-mTOR pathway is vital for cannabidiol-induced antidepressant-like effect when the drug is locally administered. However, other brain regions may also be involved in cannabidiol-induced antidepressant effect upon systemic administration.”

https://www.ncbi.nlm.nih.gov/pubmed/29968502

http://journals.sagepub.com/doi/abs/10.1177/0269881118784877?journalCode=jopa