Phytochemistry of Cannabis sativa L.

Image result for University of Mississippi

“Cannabis (Cannabis sativa, or hemp) and its constituents-in particular the cannabinoids-have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ9-tetrahydrocannabinol (Δ9-THC).

The plant’s behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ9-THC, which is produced mainly in the leaves and flower buds of the plant.

Besides Δ9-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products.

Today, more than 560 constituents have been identified in cannabis.

The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer’s, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.

This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.”

https://www.ncbi.nlm.nih.gov/pubmed/28120229

Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons.

Image result for Redox Biol.

“Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury.

In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen-glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line.

This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.”

https://www.ncbi.nlm.nih.gov/pubmed/28110213

A case for cannabidiol in Wolf-Hirschhorn syndrome seizure management.

Image result for Am J Med Genet A.

“Complex, and sometimes intractable, seizures affect the quality of life and cognitive development of over 90% of individuals with Wolf-Hirschhorn syndrome (WHS). Fine resolution genotype-phenotype mapping of the WHS locus recently identified a candidate gene whose probable function has led to insights into a mechanism connecting WHS seizures with those of Dravet syndrome, a distinct condition caused by mutations in SCN1A and SCN1B. In addition to this possible molecular mechanistic connection, these disorders’ seizures share a strikingly similar constellation of features, including clinical presentation, seizure types, early age of onset, EEG pattern, and responses to specific anti-epileptic drugs. Based in part on these similarities, we suggest that a highly successful Phase III clinical trial of a formulation of cannabidiol for Dravet syndrome seizures may be directly translatable into possible benefits for WHS individuals with challenging seizure patterns.”

https://www.ncbi.nlm.nih.gov/pubmed/28102593

Targeting Cutaneous Cannabinoid Signaling in Inflammation – A “High”-way to Heal?

Image result for EBioMedicine

“The endocannabinoid system (ECS) is a recently emerging complex regulator of multiple physiological processes. It comprises several endogenous ligands (e.g. N-arachidonoylethanolamine, a.k.a. anandamide [AEA], 2-arachidonoylglycerol [2-AG], palmitoylethanolamide [PEA], etc.), a number of endocannabinoid (eCB)-responsive receptors (e.g. CB1 and CB2, etc.), as well as enzymes and transporters involved in the synthesis and degradation of the eCBs.

Among many other tissues and organs, various members of the ECS were shown to be expressed in the skin as well. Indeed, AEA, 2-AG, CB1 and CB2 together with the major eCB-metabolizing enzymes (e.g. fatty acid amide hydrolase [FAAH], which cleaves AEA to ethanolamine and pro-inflammatory arachidonic acid) were found in various cutaneous cell types. Importantly, the eCB-tone and cannabinoid signaling in general appear to play a key role in regulating several fundamental aspects of cutaneous homeostasis, including proliferation and differentiation of epidermal keratinocytes, hair growth, sebaceous lipid production, melanogenesis, fibroblast activity, etc.

Moreover, appropriate eCB-signaling through CB1 and CB2 receptors was found to be crucially important in keeping cutaneous inflammatory processes under control.

Collectively, these findings (together with many other recently published data) implied keratinocytes to be “non-classical” immune competent cells, playing a central role in initiation and regulation of cutaneous immune processes, and the “c(ut)annabinoid” system is now proven to be one of their master regulators.

Another recently emerging, fascinating possibility to manage cutaneous inflammation through the cannabinoid signaling is the administration of phytocannabinoids (pCB). Cannabis sativa contains over 100 different pCBs, the vast majority of which have no psychotropic activity, and usually possess a “favorable” side-effect profile, which makes these substances particularly interesting drug candidates in treating several inflammation-accompanied diseases.

With respect to the skin, we have recently shown that one of the best studied pCBs, (−)-cannabidiol (CBD), may have great potential in managing acne, an inflammation-accompanied, extremely prevalent cutaneous disease.

Collectively, in light of the above results, both increase/restoration of the homeostatic cutaneous eCB-tone by FAAH-inhibitors and topical administration of non-psychotropic pCBs hold out the promise to exert remarkable anti-inflammatory actions, making them very exciting drug candidates, deserving full clinical exploration as potent, yet safe novel class of anti-inflammatory agents.”

http://www.ebiomedicine.com/article/S2352-3964(17)30003-8/fulltext

Historical perspective on the medical use of cannabis for epilepsy: Ancient times to the 1980s.

Image result for Epilepsy Behav.

“There has been a dramatic surge in the interest of utilizing cannabis for epilepsy treatment in the US. Yet, access to cannabis for research and therapy is mired in conflicting regulatory policies and shifting public opinion. Understanding the current state of affairs in the medical cannabis debate requires an examination of the history of medical cannabis use. From ancient Chinese pharmacopeias to the current Phase III trials of pharmaceutical grade cannabidiol, this review covers the time span of cannabis use for epilepsy therapy so as to better assess the issues surrounding the modern medical opinion of cannabis use. This article is part of a Special Issue titled Cannabinoids and Epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/28089286

http://www.thctotalhealthcare.com/category/epilepsy-2/

Oral cannabidiol does not produce a signal for abuse liability in frequent marijuana smokers.

Image result for Drug Alcohol Depend.

“Cannabidiol (CBD) is a naturally occurring constituent of the marijuana plant.

In the past few years, there has been great interest in the therapeutic effects of isolated CBD and it is currently being explored for numerous disease conditions (e.g., pain, epilepsy, cancer, various drug dependencies). However, CBD remains a Schedule I drug on the U.S. Controlled Substances Act (CSA).

Despite its status, there are no well-controlled data available regarding its abuse liability.

Overall, CBD did not display any signals of abuse liability at the doses tested and these data may help inform U.S. regulatory decisions regarding CBD schedule on the CSA.”

https://www.ncbi.nlm.nih.gov/pubmed/28088032

Cannabinol and cannabidiol exert opposing effects on rat feeding patterns.

 Image result for Psychopharmacology (Berl).

“Increased food consumption following ∆(9)-tetrahydrocannabinol-induced cannabinoid type 1 receptor agonism is well documented.

However, possible non-∆(9)-tetrahydrocannabinol phytocannabinoid-induced feeding effects have yet to be fully investigated. Therefore, we have assessed the effects of the individual phytocannabinoids, cannabigerol, cannabidiol and cannabinol, upon feeding behaviors.

Cannabinol induced a CB(1)R-mediated increase in appetitive behaviors via significant reductions in the latency to feed and increases in consummatory behaviors via increases in meal 1 size and duration. Cannabinol also significantly increased the intake during hour 1 and total chow consumed during the test. Conversely, cannabidiol significantly reduced total chow consumption over the test period. Cannabigerol administration induced no changes to feeding behavior.

This is the first time cannabinol has been shown to increase feeding. Therefore, cannabinol could, in the future, provide an alternative to the currently used and psychotropic ∆(9)-tetrahydrocannabinol-based medicines since cannabinol is currently considered to be non-psychotropic.

Furthermore, cannabidiol reduced food intake in line with some existing reports, supporting the need for further mechanistic and behavioral work examining possible anti-obesity effects of cannabidiol.”

https://www.ncbi.nlm.nih.gov/pubmed/22543671

Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells.

Image result for International Journal of Molecular Sciences

“Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer’s disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy.

In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform.

By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling.

In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis.

In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.”

https://www.ncbi.nlm.nih.gov/pubmed/28025562

Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke.

Neuropharmacology

“Currently there is no effective treatment for neonatal arterial ischemic stroke (AIS).

Cannabidiol (CBD) is neuroprotective in models of newborn hypoxic-ischemic brain damage and adult stroke.

The purpose of this work was to study the protective effect of CBD in a neonatal rat model of AIS.

RESULTS:

CBD administration improved neurobehavioral function regarding strength, hemiparesis, coordination and sensorimotor performance as assessed at P15 and P38. MRI indicated that CBD did not reduce the volume of infarct but reduced the volume of perilesional gliosis. H+-MRS indicated that CBD reduced metabolic derangement and excitotoxicty, and protected astrocyte function. Histologic studies indicated that CBD reduced neuronal loss and apoptosis, and modulated astrogliosis and microglial proliferation and activation.

CONCLUSIONS:

CBD administration after Middle Cerebral Artery Occlusion (MCAO) led to long-term functional recovery, reducing neuronal loss and astrogliosis, and modulating apoptosis, metabolic derangement, excitotoxicity and neuro-inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/28012949

“Post-stroke administration of Cannabidiol (CBD) is neuroprotective in neonatal rats. CBD neuroprotection is sustained in the long term. CBD treatment led to functional recovery in both motor and sensorimotor domains. CBD modulated excitotoxicity, astrocyte dysfunction and microglial activation.”

https://www.sciencedirect.com/science/article/pii/S0028390816305810

Bidirectional Effects of Cannabidiol on Contextual Fear Memory Extinction

Image result for frontiers in pharmacology

“Cannabidiol (CBD) is the major non-psychotropic constituent of the Cannabis plant and has anxiolytic therapeutic potential.

Cannabidiol (CBD) has been established to have both acute and long-lasting effects to reduce fear memory expression.

We showed that under conditions of strong fear conditioning, CBD reduced contextual fear memory expression both acutely during the extinction session as well as later at a fear retention test.

This pattern of results is consistent with CBD enhancing contextual fear memory extinction when the initial conditioning is strong, but impairing extinction when conditioning is weak. This bidirectional effect of CBD may be related to stress levels induced by conditioning and evoked at retrieval during extinction, rather than the strength of the memory per se.

 In summary, CBD had bidirectional effects on the extinction of contextual fear conditioning, depending on the nature of the initial fear conditioning. Nevertheless, in the more translationally-relevant stronger conditioning setting, CBD both acutely inhibited fear expression and enhanced extinction to produce longer lasting reductions in fear.
These observations provide further support for the potential translational use of CBD in conditions such as posttraumatic stress disorder and specific phobias.”

http://journal.frontiersin.org/article/10.3389/fphar.2016.00493/full?utm_source=S-TWT&utm_medium=SNET&utm_campaign=ECO_FPHAR_XXXXXXXX_auto-dlvrit%0A