In vitro Antimicrobial and Antioxidant Activity of Extracts from Six Chemotypes of Medicinal Cannabis

“Nowadays, medicinal cannabis (Cannabis sativa L) is in the focus of the researches not only for its high content of tetrahydrocannabinol (THC), but for other cannabinoids as well.

It has been reported that some of the identified substances (e.g. cannabidiol, cannabinochromene) possess anti-inflammatory and antimicrobial properties, which corresponds to its traditional use as wound healing agent at Pakistan.

The aim of this study was to evaluate antimicrobial and antioxidant ability of extracts from high potent Cannabis sativa chemotypes.

The six ethanolic extracts prepared from dried inflorescence of five medicinal cannabis chemotypes (Nurse Jackie, Jilly Bean, Nordle, Jack Cleaner, Conspiracy Kush) were tested by standard microdilution method against Staphylococcus aureus (three strains), Streptococcus pyogenes and the yeast Candida albicans.

Those microbial strains are present on skin and can cause complication during wound healing process.

The antioxidative activity, which plays an important role in wound healing process, was tested by oxygen radical absorbance capacity test (ORAC).

All tested extracts demonstrated high antimicrobial activity against two strains of S. aureus and S. pyogenes (MIC ranged from 4 – 16 µg·mL-1), moreover high antioxidant capacity was observed (ORAC ranged from 800 – 1300 µg TE/mg of extract).

The results indicate that cannabis has high potential to be used in ointments and other material for wound healing.

However, further research on the identification of the active components is needed.”

https://www.thieme-connect.com/DOI/DOI?10.1055/s-0036-1596302

Inhibition of cervical cancer cell proliferation by cannabidiol

“Seventy phytocannabinoids are now known to be synthesized by Cannabis sativa (marijuana)]. The major non-psychoactive cannabinoid cannabidiol (CBD) exhibits antiproliferative effects against breast, cervix, colon, glioma, leukemia, ovary, prostate, and thyroid cancer cells. In this study, we investigated the antiproliferative effect of CBD on the ME-180 cervical cancer cell line. The results of our study suggest that CBD exerts its antiproliferative effect via multiple mechanisms, and it could be a potential treatment for cervical cancer.”

https://www.thieme-connect.com/DOI/DOI?10.1055/s-0036-1596862

An observational postmarketing safety registry of patients in the UK, Germany, and Switzerland who have been prescribed Sativex® (THC:CBD, nabiximols) oromucosal spray.

Image result for Journal of Therapeutics and Clinical Risk Management

“The global exposure of Sativex®9-tetrahydrocannabinol [THC]:cannabidiol [CBD], nabiximols) is estimated to be above 45,000 patient-years since it was given marketing approval for treating treatment-resistant spasticity in multiple sclerosis (MS).

An observational registry to collect safety data from patients receiving THC:CBD was set up following its approval in the UK, Germany, and Switzerland, with the aim of determining its long-term safety in clinical practice.

Twice a year, the Registry was opened to prescribing physicians to voluntarily report data on patients’ use of THC:CBD, clinically significant adverse events (AEs), and special interest events. The Registry contains data from 941 patients with 2,213.98 patient-years of exposure.

Within this cohort, 60% were reported as continuing treatment, while 83% were reported as benefiting from the treatment. Thirty-two percent of patients stopped treatment, with approximately one third citing lack of effectiveness and one quarter citing AEs.

Psychiatric AEs of clinical significance were reported in 6% of the patients, 6% reported falls requiring medical attention, and suicidality was reported in 2%. Driving ability was reported to have worsened in 2% of patients, but improved in 7%.

AEs were more common during the first month of treatment. The most common treatment-related AEs included dizziness (2.3%) and fatigue (1.7%).

There were no signals to indicate abuse, diversion, or dependence.

The long-term risk profile from the Registry is consistent with the known (labeled) safety profile of THC:CBD, and therefore supports it being a well-tolerated and beneficial medication for the treatment of MS spasticity.

No evidence of new long-term safety concerns has emerged.”

https://www.ncbi.nlm.nih.gov/pubmed/27956834

Marijuana Can Cure Epilepsy: Recent Studies Done By Scientists Of Birmingham Epilepsy Center Revealed

Image result for science world report

“A series of trials on marijuana to treat epilepsy is conducted by the Birmingham Epilepsy Center revealed that Cannabidiol (CBD), purified from Cannabis plant or commonly known marijuana, has high beneficial effects in the treatment of epileptic patients. The study revealed that oral administration of CBD oil caused a significant reduction in the frequency of epileptic seizures in adult and pediatric patients.”

http://www.scienceworldreport.com/articles/53849/20161207/marijuana-cure-epilepsy-recent-studies-done-scientists-birmingham-center-revealed.htm

Cannabidiol Reduces Seizures in Various Epilepsy Disorders

Image result for medscape

“A purified oral formulation of cannabidiol (CBD; Epidiolex, GW Pharmaceuticals) significantly reduces seizures in treatment-resistant epilepsy, according to new research that included double-blind randomized controlled trials of patients with Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS), two of the most difficult-to-manage seizure conditions.

The new research, released here at the American Epilepsy Society (AES) 2016 Annual Meeting, also highlights the relative safety of this new drug, a prescription medicine derived from the cannabis plant.”

http://www.medscape.com/viewarticle/872763

Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells.

 Image result for Front Physiol

“Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions.

In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol(CBD) can influence their expression profile, improving the therapeutic potential of this cell culture.

In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy.”

https://www.ncbi.nlm.nih.gov/pubmed/27932991

Cannabidiol Regulation of Learned Fear: Implications for Treating Anxiety-Related Disorders.

Image result for frontiers in pharmacology

“Anxiety and trauma-related disorders are psychiatric diseases with a lifetime prevalence of up to 25%. Phobias and post-traumatic stress disorder (PTSD) are characterized by abnormal and persistent memories of fear-related contexts and cues. The effects of psychological treatments such as exposure therapy are often only temporary and medications can be ineffective and have adverse side effects.

Growing evidence from human and animal studies indicates that cannabidiol, the main non-psychotomimetic phytocannabinoid present in Cannabis sativa, alleviates anxiety in paradigms assessing innate fear.

More recently, the effects of cannabidiol on learned fear have been investigated in preclinical studies with translational relevance for phobias and PTSD.

Here we review the findings from these studies, with an emphasis on cannabidiol regulation of contextual fear.

The evidence indicates that cannabidiol reduces learned fear in different ways: (1) cannabidiol decreases fear expression acutely, (2) cannabidiol disrupts memory reconsolidation, leading to sustained fear attenuation upon memory retrieval, and (3) cannabidiol enhances extinction, the psychological process by which exposure therapy inhibits learned fear.

We also present novel data on cannabidiol regulation of learned fear related to explicit cues, which indicates that auditory fear expression is also reduced acutely by cannabidiol.

We conclude by outlining future directions for research to elucidate the neural circuit, psychological, cellular, and molecular mechanisms underlying the regulation of fear memory processing by cannabidiol.

This line of investigation may lead to the development of cannabidiol as a novel therapeutic approach for treating anxiety and trauma-related disorders such as phobias and PTSD in the future.”

Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells.

Image result for journal of cellular biochemistry

“In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties.

This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate towards neuronal precursor cells.

From our results we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/27918106

Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis.

Image result for Fitoterapia journal

“This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway.

Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway.

In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases.

These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management.”

https://www.ncbi.nlm.nih.gov/pubmed/27890794

Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia.

Image result for Prog Neuropsychopharmacol Biol Psychiatry.

“This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice.

Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21).

Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO.

In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels.

CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals.

Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.”

https://www.ncbi.nlm.nih.gov/pubmed/27889412