Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

Journal of Pharmaceutical and Biomedical Analysis

“Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil.

Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein.

This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils.”

https://www.ncbi.nlm.nih.gov/pubmed/29182999

https://www.sciencedirect.com/science/article/pii/S0731708517322367?via%3Dihub

Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

Journal of Pharmaceutical and Biomedical Analysis

“Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil.

Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein.

This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils.

Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions.”

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke.

pharmaceuticals-logo

“Cannabis contains the psychoactive component delta⁸-tetrahydrocannabinol (delta⁸-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol.

It is well-known that delta⁸-THC and other cannabinoid CB₁ receptor agonists are neuroprotective during global and focal ischemic injury.

Additionally, delta⁸-THC also mediates psychological effects through the activation of the CB₁ receptor in the central nervous system.

In addition to the CB₁ receptor agonists, cannabis also contains therapeutically active components which are CB₁ receptor independent.

Of the CB₁ receptor-independent cannabis, the most important is CBD.

In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD.

In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB₁ receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/27713349

Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor.

cpb

“Cannabis sativa L. (cannabis) extracts, vapor produced by the Volcano vaporizer and smoke made from burning cannabis joints were analyzed by GC-flame ionization detecter (FID), GC-MS and HPLC. Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol.

Cannabinoids plus other components such as terpenoids and pyrolytic by-products were identified and quantified in all samples. Cannabis vapor and smoke was tested for cannabinoid receptor 1 (CB1) binding activity and compared to pure Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

The top five major compounds in Bedrocan extracts were Delta(9)-THC, cannabigerol (CBG), terpinolene, myrcene, and cis-ocimene in Bedrobinol Delta(9)-THC, myrcene, CBG, cannabichromene (CBC), and camphene in Bediol cannabidiol (CBD), Delta(9)-THC, myrcene, CBC, and CBG.

The major components in Bedrocan vapor (>1.0 mg/g) were Delta(9)-THC, terpinolene, myrcene, CBG, cis-ocimene and CBD in Bedrobinol Delta(9)-THC, myrcene and CBD in Bediol CBD, Delta(9)-THC, myrcene, CBC and terpinolene.

The major components in Bedrocan smoke (>1.0 mg/g) were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene.

There was no statistically significant difference between CB1 binding of pure Delta(9)-THC compared to cannabis smoke and vapor at an equivalent concentration of Delta(9)-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/20118579

Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrheic skin and acne treatment.

“Acne is a common skin disease characterized by elevated sebum production and inflammation of the sebaceous glands.

We have previously shown that a non-psychotropic phytocannabinoid ((-)-cannabidiol [CBD]) exerted complex anti-acne effects by normalizing “pro-acne agents”-induced excessive sebaceous lipid production, reducing proliferation and alleviating inflammation in human SZ95 sebocytes.

Therefore, in the current study we aimed to explore the putative anti-acne effects of further non-psychotropic phytocannabinoids ((-)-cannabichromene [CBC], (-)-cannabidivarin [CBDV], (-)-cannabigerol [CBG], (-)-cannabigerovarin [CBGV] and (-)-Δ9 -tetrahydrocannabivarin [THCV]).

Viability and proliferation of human SZ95 sebocytes were investigated by MTT- and CyQUANT-assays; cell death and lipid synthesis were monitored by DilC1 (5)-SYTOX Green labelling and Nile Red staining, respectively. Inflammatory responses were investigated by monitoring expressions of selected cytokines upon lipopolysaccharide treatment (RT-qPCR, ELISA). Up to 10 μM, the phytocannabinoids only negligibly altered viability of the sebocytes, whereas high doses (≥50 μM) induced apoptosis.

Interestingly, basal sebaceous lipid synthesis was differentially modulated by the substances: CBC and THCV suppressed it, CBDV had only minor effects, whereas CBG and CBGV increased it.

Importantly, CBC, CBDV and THCV significantly reduced arachidonic acid (AA)-induced “acne-like” lipogenesis.

Moreover, THCV suppressed proliferation, and all phytocannabinoids exerted remarkable anti-inflammatory actions.

Our data suggest that CBG and CBGV may have potential in the treatment of dry-skin syndrome, whereas CBC, CBDV and especially THCV show promise to become highly efficient, novel anti-acne agents.

Moreover, based on their remarkable anti-inflammatory actions, phytocannabinoids could be efficient, yet safe novel tools in the management of cutaneous inflammations.”

http://www.ncbi.nlm.nih.gov/pubmed/27094344

http://www.thctotalhealthcare.com/category/acne/

Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using High-Performance Liquid Chromatography.

“An HPLC single-laboratory validation was performed for the detection and quantification of the 11 major cannabinoids in most cannabis varieties, namely, cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabinol (CBN), Δ9-trans-tetrahydrocannabinol (Δ9-THC), Δ8- trans-tetrahydrocannabinol (Δ8-THC), cannabicyclol (CBL), cannabichromene (CBC), and Δ9-tetrahydrocannabinolic acid-A (THCAA). The analysis was carried out on the biomass and extracts of these varieties. Methanol-chloroform (9:1, v/v) was used for extraction, 4-androstene-3,17-dione was used as the internal standard, and separation was achieved in 22.2 min on a C18 column using a two- step gradient elution. The method was validated for the 11 cannabinoids. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area with r2 values of >0.99 for all 11 cannabinoids. Method accuracy was determined through a spike study, and recovery ranged from 89.7 to 105.5% with an RSD of 0.19 to 6.32% for CBDA, CBD, THCV, CBN, Δ9-THC, CBL, CBC, and THCAA; recovery was 84.7, 84.2, and 67.7% for the minor constituents, CBGA, CBG, and Δ8-THC, respectively, with an RSD of 2.58 to 4.96%. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in different types of cannabis plant materials.”

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke

“Cannabis contains over 60 different terpeno-phenol compounds…

cannabidiol (CBD), cannabigerol (CBG), cannabidivarin (CBDV) are known as non-psychoactive components of cannabis.

These compounds have shown anti-inflammatory, immunosuppressive, analgesic, anxiolytic and anti-cancer effects…

Cannabinoids may play a role in neuroprotection in disorders such as stroke, Parkinson’s disease, traumatic brain injury and epilepsy…

It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury…

Accumulating data now suggest that cannabinoid CB1 receptors contribute to neuroprotection… Emerging data now support the evidence of the anti-inflammatory action of CBD…

 We have previously reported that CBD  has a potent and long-lasting neuroprotective effect when administered both pre- and post-ischemia, whereas only pre-ischemic treatment with delta9-THC reduced the infarction size…

These results suggest that CBD may prevent post-ischemic injury progressively induced by ischemic stroke….

…anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In the last 10 years, it has been possible to demonstrate that CBD has the following unique therapeutic profile: 1) a cannabinoid receptor-independent mechanism, 2) long-lasting cerebro- protective effect after ischemic stroke, and lack of development of tolerance.

Moreover, CBD has almost no side effects, including psychotropic activity.

Preliminary studies highlight the fact that the multifunctional actions of CBD may lead to benefits in more complex systems within the brain after ischemic stroke.

CBD offers new therapeutic possibilities for treating ischemic stroke…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036658/

http://www.thctotalhealthcare.com/category/stroke-2/

Intraocular pressure, ocular toxicity and neurotoxicity after administration of cannabinol or cannabigerol.

“Cannabinol or cannabigerol was administered to cats topically in doses of 250, 500 and 1000 micrograms as a single drop or chronically via osmotic minipumps (20 micrograms hr-1) over a period of 9 days. While cannabinol had a modest effect on intraocular pressure after a single dose, it caused a more significant reduction in ocular tension during chronic administration. Cannabigerol had similar effects, but the magnitude of response to its chronic administration was greater. Cannabinol but not cannabigerol caused conjunctival erythema and hyperemia. After systemic administration of cannabinol (20, 40 or 80 mg kg-1) to rats, 8-13 Hz polyspike discharges appeared in the electrocorticogram during wakefulness and during rapid eye movement sleep episodes. Cannabigerol (10, 30 and 100 mg kg-1) lacked this effect.

These results indicate that chronic administration of these cannabinoids lowers ocular tension considerably.

Like marihuana and delta-9-tetrahydrocannabinol, cannabinol produced both ocular toxicity and neurotoxicity. As cannabigerol lacked these toxicities, it appears that the ocular hypotensive effect of this cannabinoid is somewhat dissociable from both the adverse central and ocular effects accompanying marihuana intake.”

http://www.ncbi.nlm.nih.gov/pubmed/6499952

A comparison of the ocular and central effects of delta 9-tetrahydrocannabinol and cannabigerol.

“Both delta 9-tetrahydrocannabinol (delta 9-THC) and cannabigerol, two naturally occurring marihuana cannabinoids, produced only a modest fall in intraocular pressure after acute topical application to the eyes of cats.

After chronic administration unilaterally to the cornea via Alzet osmotic minipumps and connecting extraocular cannulas, however, a considerable fall in ocular tension amounting to 4 to 7 mm Hg occurred. After systemic administration of delta 9-THC to rats, polyspike discharges appeared in the cortical electroencephalogram initially during wakefulness and behavioral depression. These polyspikes subsequently became evident within rapid eye movement sleep episodes. Cannabigerol was devoid of this effect. After removal of either sympathetic or parasympathetic input to the eyes of cats, the intraocular pressure lowering effect of delta 9-THC was not changed. Neither delta 9-THC nor cannabigerol altered the rate of formation of aqueous humor. On the other hand, both cannabinoids produced a two-to three-fold increase in aqueous outflow facility.

These results suggest that cannabigerol and related cannabinoids may have therapeutic potential for the treatment of glaucoma.”

http://www.ncbi.nlm.nih.gov/pubmed/1965836

Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid.

“Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid which interacts with specific targets involved in carcinogenesis…

Here, we investigated whether CBG protects against colon tumorigenesis.

In vivo, CBG inhibited the growth of xenograft tumors as well as chemically-induced colon carcinogenesis.

CBG hampers colon cancer progression in vivo and selectively inhibits the growth of colorectal cancer cells, an effect shared by other TRPM8 antagonists.

CBG should be considered translationally in colorectal cancer prevention and cure.”

http://www.ncbi.nlm.nih.gov/pubmed/25269802

http://www.thctotalhealthcare.com/category/colon-cancer/