Cannabinoid inhibition of adenylate cyclase. Biochemistry of the response in neuroblastoma cell membranes.

“The inhibition of adenylate cyclase activity by cannabimimetic compounds in a membrane fraction from cultured neuroblastoma cells has been examined. The inhibition was shown to be concentration-dependent over a nanomolar range for both delta 9-tetrahydrocannabinol and its synthetic analog…

This study points to the similarities between the enzyme inhibition by cannabimimetic compounds and by muscarinic cholinergic compounds. It is inferred that the cannabimimetic compounds must act via regulatory mechanisms similar to those operating for receptor-mediated inhibition of adenylate cyclase.”

http://www.ncbi.nlm.nih.gov/pubmed/2984538

Palmitoylethanolamide: From endogenous cannabimimetic substance to innovative medicine for the treatment of cannabis dependence.

“Palmitoylethanolamide (PEA) is a fatty acid amide showing some pharmacodynamic similarities with Δ9-tetrahydrocannabinol, the principal psychoactive compound present in the cannabis plant.

Like Δ9-tetrahydrocannabinol, PEA can produce a direct or indirect activation of cannabinoid receptors.

 Furthermore, it acts as an agonist at TRPV1 receptor.

The hypothesis is that PEA has anti-craving effects in cannabis dependent patients, is efficacious in the treatment of withdrawal symptoms, produces a reduction of cannabis consumption and is effective in the prevention of cannabis induced neurotoxicity and neuro-psychiatric disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23896215

Beta-caryophyllene is a dietary cannabinoid

“The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB(1)) and CB(2) receptors. Although the CB(1) receptor is responsible for the psychomodulatory effects, activation of the CB(2) receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis.

 Here, we report that the widespread plant volatile (E)-beta-caryophyllene [(E)-BCP] selectively binds to the CB(2) receptor and that it is a functional CB(2) agonist.

 Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis.

 …this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB(2) receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis…

 Because (E)-BCP is a major constituent in Cannabis essential oil and shows significant cannabimimetic effects, it may also contribute to the overall effect of Cannabis preparations…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449371/

[The modulatory role of endocannabinoids in sleep].

“The endogenous cannabinoid, or endocannabinoid, system is present in the central nervous system (CNS) of rodents and humans. This system includes receptors, endogenous ligands and enzymes. The presence of cannabinoid receptors, called CB1, in the CNS has been reported in the cerebral cortex, the hippocampus, the cerebellum and the brain stem. This neuroanatomical location suggests that this receptor could modify several physiological functions, such as the consolidation of memory, motor control and the generation of sleep.

 

Recent reports have described the presence of lipids in the CNS that bind to the CB1 receptor. Administration of said molecules induces cannabimimetic effects, and hence it has been suggested that these lipids are endogenous cannabinoids or endocannabinoids. Anandamide, 2-arachidonylglycerol, virodhamine, noladin ether and N-arachidonyldopamine are molecules that belong to the endocannabinoid family. Anandamide has received more attention from researchers because it was the first endocannabinoid to be reported. Pharmacological experiments have shown that this endocannabinoid induces several different intracellular and behavioural changes.

CONCLUSIONS:

In this study, we review the most important pharmacological aspects of exogenous cannabinoids and the neurobiological role played by the endocannabinoid system, including endogenous and exogenous ligands and receptors. We also examine their pharmacological effects on different behaviours, with particular attention given to the modulation of sleep.”

http://www.ncbi.nlm.nih.gov/pubmed/18297624

Proof of Concept Trial of Dronabinol in Obstructive Sleep Apnea

“… Δ9-TetraHydroCannabinol (Δ9THC) stabilizes autonomic output during sleep, reduces spontaneous sleep-disordered breathing, and blocks serotonin-induced exacerbation of sleep apnea. On this basis, we examined the safety, tolerability, and efficacy of dronabinol (Δ9THC), an exogenous Cannabinoid type 1 and type 2 (CB1 and CB2) receptor agonist in patients with Obstructive Sleep Apnea (OSA)…

Conclusion: Dronabinol treatment is safe and well-tolerated in OSA patients at doses of 2.5–10mg daily and significantly reduces AHI in the short-term. These findings should be confirmed in a larger study in order to identify sub-populations with OSA that may benefit from cannabimimetic pharmacologic therapy…

This proof of concept study demonstrates that dronabinol is safe, well-tolerated, and reduces AHI by approximately a third over 3 weeks of oral administration. Dronabinol treatment may be a viable alternative or adjunctive therapy in selected patients with OSA.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550518/

Functional role for cannabinoids in respiratory stability during sleep.

“Serotonin, acting in the peripheral nervous system, can exacerbate sleep-related apnea, and systemically administered serotonin antagonists reduce sleep-disordered respiration in rats and bulldogs. Because cannabinoid receptor agonists are known to inhibit the excitatory effects of serotonin on nodose ganglion cells, we examined the effects of endogenous (oleamide) and exogenous (delta9-tetrahydrocannabinol; delta9THC) cannabimimetic agents on sleep-related apnea…

Our data show that delta9THC and oleamide each stabilized respiration during all sleep stages… This observation suggests an important role for endocannabinoids in maintaining autonomic stability during sleep…

CONCLUSIONS:

This study demonstrates potent suppression of sleep-related apnea by both exogenous and endogenous cannabinoids. These findings are of relevance to the pathogenesis and pharmacological treatment of sleep-related breathing disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/12071539

Pharmacology of cannabinoid receptor ligands.

Abstract

“Mammalian tissues contain at least two types of cannabinoid receptor, CB1 and CB2, both coupled to G proteins. CB1 receptors are expressed mainly by neurones of the central and peripheral nervous system whereas CB2 receptors occur in certain non-neuronal tissues, particularly in immune cells. The existence of endogenous ligands for cannabinoid receptors has also been demonstrated. The discovery of this endogenous cannabinoid system has been paralleled by a renewed interest in possible therapeutic applications of cannabinoids, for example in the management of pain and in the suppression of muscle spasticity/spasm associated with multiple sclerosis or spinal cord injury. It has also prompted the development of a range of novel cannabinoid receptor ligands, including several that show marked selectivity for CB1 or CB2 receptors. This review summarizes current knowledge about the in vitro pharmacological properties of important CB1 and CB2 receptor ligands. Particular attention is paid to the binding properties of these ligands, to the efficacies of cannabinoid receptor agonists, as determined using cyclic AMP or [35S]GTPgammaS binding assays, and to selected examples of how these pharmacological properties can be influenced by chemical structure. The in vitro pharmacological properties of ligands that can potently and selectively oppose the actions of CB1 or CB2 receptor agonists are also described. When administered by themselves, some of these ligands produce effects in certain tissue preparations that are opposite in direction to those produced by cannabinoid receptor agonists and the possibility that the ligands producing such inverse cannabimimetic effects are inverse agonists rather than pure antagonists is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/10469884