Cannabinoids in the management of chronic pain: a front line clinical perspective.

“Chronic pain is an escalating public health problem. Currently available treatments are inadequate to control chronic pain conditions, and there is a critical need for novel treatments.

Over a half century of elegant preclinical research has identified the presence of a sophisticated endocannabinoid system that is part of our natural pain and immune defense network.

Convergent work has supported the significant potential to exploit this system to decrease pain and inflammation.

Although the clinical research remains in its infancy, recent systematic reviews have found that 25 of 30 randomized controlled trials have demonstrated a significant analgesic effect.

The authors concluded that cannabinoids currently available for clinical use demonstrate a modest analgesic effect and are safe for the management of chronic pain.

There is a critical need for more translational research so that the excellent work of Dr. Itai Bab and our basic science colleagues around the world can move forward in providing novel cannabinoid-based medicines.

This should include more potent analgesics that are limited in side effects with several routes of delivery. Our patients deserve additional agents for pain control with a novel mechanism of action, and cannabinoids are the new frontier.”

http://www.ncbi.nlm.nih.gov/pubmed/26581068

Dissecting the cannabinergic control of behavior: The where matters.

“The endocannabinoid system is the target of the main psychoactive component of the plant Cannabis sativa, the Δ9 -tetrahydrocannabinol (THC).

This system is composed by the cannabinoid receptors, the endogenous ligands, and the enzymes involved in their metabolic processes, which works both centrally and peripherally to regulate a plethora of physiological functions.

This review aims at explaining how the site-specific actions of the endocannabinoid system impact on memory and feeding behavior through the cannabinoid receptors 1 (CB1 R).

Centrally, CB1 R is widely distributed in many brain regions, different cell types (e.g. neuronal or glial cells) and intracellular compartments (e.g. mitochondria).

Interestingly, cellular and molecular effects are differentially mediated by CB1 R according to their cell-type localization (e.g. glutamatergic or GABAergic neurons).

Thus, understanding the cellular and subcellular function of CB1 R will provide new insights and aid the design of new compounds in cannabinoid-based medicine.”

http://www.ncbi.nlm.nih.gov/pubmed/26260530