Cannabis: From a Plant That Modulates Feeding Behaviors toward Developing Selective Inhibitors of the Peripheral Endocannabinoid System for the Treatment of Obesity and Metabolic Syndrome.

toxins-logo “In this review, we discuss the role of the endocannabinoid (eCB) system in regulating energy and metabolic homeostasis. Endocannabinoids, via activating the cannabinoid type-1 receptor (CB1R), are commonly known as mediators of the thrifty phenotype hypothesis due to their activity in the central nervous system, which in turn regulates food intake and underlies the development of metabolic syndrome. Indeed, these findings led to the clinical testing of globally acting CB1R blockers for obesity and various metabolic complications. However, their therapeutic potential was halted due to centrally mediated adverse effects. Recent observations that highlighted the key role of the peripheral eCB system in metabolic regulation led to the preclinical development of various novel compounds that block CB1R only in peripheral organs with very limited brain penetration and without causing behavioral side effects. These unique molecules, which effectively ameliorate obesity, type II diabetes, fatty liver, insulin resistance, and chronic kidney disease in several animal models, are likely to be further developed in the clinic and may revive the therapeutic potential of blocking CB1R once again.”

https://www.ncbi.nlm.nih.gov/pubmed/31096702

https://www.mdpi.com/2072-6651/11/5/275

CB2 receptor deletion on myeloid cells enhanced mechanical allodynia in a mouse model of neuropathic pain.

 Scientific Reports“Neuropathic pain can develop after nerve injury, leading to a chronic condition with spontaneous pain and hyperalgesia.

Pain is typically restricted to the side of the injured nerve, but may occasionally spread to the contralateral side, a condition that is often referred to as mirror-image pain.

Mechanisms leading to mirror-image pain are not completely understood, but cannabinoid CB2 receptors have been implicated.

In this study, we use genetic mouse models to address the question if CB2 receptors on neurons or on microglia/macrophages are involved.

We conclude that CB2 receptors on microglia and macrophages, but not on neurons, modulate neuropathic pain responses.”

https://www.ncbi.nlm.nih.gov/pubmed/31097758

https://www.nature.com/articles/s41598-019-43858-4

Cannabinoid-induced relief of hypermotility in a rat model of the irritable bowel syndrome.

Publication cover image

“Cannabinoid-2 receptor agonists may be useful in treating intestinal motility disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31094052

https://onlinelibrary.wiley.com/doi/abs/10.1111/nmo.13613

Emerging Class of Omega-3 Fatty Acid Endocannabinoids & Their Derivatives.

Prostaglandins & Other Lipid Mediators

“Cannabinoid receptor activation is involved in homeostatic regulation of the body. These receptors are activated by cannabinoids, that include the active constituents of Cannabis sativa as well as endocannabinoids (eCBs). The eCBs are endogenously synthesized from the omega-6 and omega-3 polyunsaturated fatty acids (PUFAs). In summary, we outline the novel findings regarding a growing class of signaling molecules, omega-3 eCBs, that can control the physiological and pathophysiological processes in the body.” https://www.ncbi.nlm.nih.gov/pubmed/31085370

“Anti-inflammatory ω-3 endocannabinoid epoxides.”  https://www.ncbi.nlm.nih.gov/pubmed/28687674

“Antitumorigenic Properties of Omega-3 Endocannabinoid Epoxides.” https://www.ncbi.nlm.nih.gov/pubmed/29856219

Cannabinoid interactions with ion channels and receptors.

Publication Cover

“Cannabidiol (CBD), the non-psychoactive component of Cannabis sativa, acts on a diverse selection of membrane proteins with promising therapeutic potential in epilepsy and chronic pain. In this review, we will outline the studies that report reproducible results of CBD and other cannabinoids changing membrane channel function, with particular interest on Nav. Nav are implicated in fatal forms of epilepsy and are also associated with chronic pain. This makes Nav potential targets for CBD interaction since it has been reported to reduce pain and seizures. This discovery will not only prompt further research towards CBD’s characterization, but also promotes the application of cannabinoids as potentially therapeutic compounds for diseases like epilepsy and pain.” https://www.ncbi.nlm.nih.gov/pubmed/31088312
https://www.tandfonline.com/doi/full/10.1080/19336950.2019.1615824

Towards A Molecular Understanding of The Cannabinoid Related Orphan Receptor GPR18: A Focus on Its Constitutive Activity.

ijms-logo

“The orphan G-protein coupled receptor (GPCR), GPR18, has been recently proposed as a potential member of the cannabinoid family as it recognizes several endogenous, phytogenic, and synthetic cannabinoids. Potential therapeutic applications for GPR18 include intraocular pressure, metabolic disorders, and cancer. GPR18 has been reported to have high constitutive activity, i.e., activation/signaling occurs in the absence of an agonist. This activity can be reduced significantly by the A3.39N mutation. At the intracellular (IC) ends of (transmembrane helices) TMH3 and TMH6 in GPCRs, typically, a pair of oppositely charged amino acids form a salt bridge called the “ionic lock”. Breaking of this salt bridge creates an IC opening for coupling with G protein. The GPR18 “ionic lock” residues (R3.50/S6.33) can form only a hydrogen bond. In this paper, we test the hypothesis that the high constitutive activity of GPR18 is due to the weakness of its “ionic lock” and that the A3.39N mutation strengthens this lock. To this end, we report molecular dynamics simulations of wild-type (WT) GPR18 and the A3.39N mutant in fully hydrated (POPC) phophatidylcholine lipid bilayers. Results suggest that in the A3.39N mutant, TMH6 rotates and brings R3.50 and S6.33 closer together, thus strengthening the GPR18 “ionic lock”.”

https://www.ncbi.nlm.nih.gov/pubmed/31075933

https://www.mdpi.com/1422-0067/20/9/2300

Endocannabinoid System in Spinocerebellar Ataxia Type-3 and Other Autosomal-Dominant Cerebellar Ataxias: Potential Role in Pathogenesis and Expected Relevance as Neuroprotective Targets.

Image result for frontiers in molecular neuroscience
“Spinocerebellar ataxias (SCAs) are a group of hereditary and progressive neurological disorders characterized by a loss of balance and motor coordination. SCAs have no cure and effective symptom-alleviating and disease-modifying therapies are not currently available. However, based on results obtained in studies conducted in murine models and information derived from analyses in post-mortem tissue samples from patients, which show notably higher levels of CB1 receptors found in different cerebellar neuronal subpopulations, the blockade of these receptors has been proposed for acutely modulating motor incoordination in cerebellar ataxias, whereas their chronic activation has been proposed for preserving specific neuronal losses. Additional studies in post-mortem tissues from SCA patients have also demonstrated elevated levels of CB2 receptors in Purkinje neurons as well as in glial elements in the granular layer and in the cerebellar white matter, with a similar profile found for endocannabinoid hydrolyzing enzymes, then suggesting that activating CB2 receptors and/or inhibiting these enzymes may also serve to develop cannabinoid-based neuroprotective therapies.”
“Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3.” https://www.ncbi.nlm.nih.gov/pubmed/27717809

Endocannabinoid contributions to alcohol habits and motivation: Relevance to treatment.

Addiction Biology banner“Individuals with alcohol use disorder exhibit compulsive habitual behaviors that are thought to be, in part, a consequence of chronic and persistent use of alcohol.

The endocannabinoid system plays a critical role in habit learning and in ethanol self-administration, but the role of this neuromodulatory system in the expression of habitual alcohol seeking is unknown.

Here, we investigated the role of the endocannabinoid system in established alcohol habits using contingency degradation in male C57BL/6 mice.

These results demonstrate an important role for endocannabinoid signaling in the motivation to seek ethanol, in ethanol-motivated habits, and suggest that pharmacological manipulations of endocannabinoid signaling could be effective therapeutics for treating alcohol use disorder.”

https://www.ncbi.nlm.nih.gov/pubmed/31056846

https://onlinelibrary.wiley.com/doi/abs/10.1111/adb.12768

Cannabidiol attenuates aggressive behavior induced by social isolation in mice: Involvement of 5-HT1A and CB1 receptors.

Progress in Neuro-Psychopharmacology and Biological Psychiatry

“Long-term single housing increases aggressive behavior in mice, a condition named isolation-induced aggression or territorial aggression, which can be attenuated by anxiolytic, antidepressant, and antipsychotic drugs.

Preclinical and clinical findings indicate that cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, has anxiolytic, antidepressant, and antipsychotic properties. Few studies, however, have investigated the effects of CBD on aggressive behaviors.

Here, we investigated whether CBD (5, 15, 30, and 60 mg/kg; i.p.) could attenuate social isolation-induced aggressive behavior in the resident-intruder test.

Taken together, our findings suggest that CBD may be therapeutically useful to treat aggressive behaviors that are usually associated with psychiatric disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31054943

https://www.sciencedirect.com/science/article/pii/S0278584618308340?via%3Dihub

cannabidiol reduces aggressiveness, study concludes”  https://globalhealthnewswire.com/2019/07/31/cannabidiol-reduces-aggressiveness-study-concludes/

Marijuana for Parkinson’s Disease?

 Image result for innov clin neurosci

“Marijuana is popular in the United States and is being widely legalized for recreational and medicinal purposes. It remains a Schedule 1 substance without fully proven risks and benefits; yet, it is increasingly available in many US states and territories.

Cannabis might have medicinal efficacy in Parkinson’s disease as a form of medical marijuana. Endocannabinoid receptors exist throughout the nervous system and are documented to influence receptors affecting a wide variety of areas. Neuroprotective aspects might be induced by cannabis exposure that might yield benefit against the nigrostriatal degeneration of patients with Parkinson’s disease.

Animal investigations support suggestions of improvement in bradykinesia and/or tremors, but this is unsubstantiated in human studies. However, some patient surveys and anecdotal or case reports indicate that marijuana attenuates some motor manifestations of parkinsonism and also of non-motor, mood and/or cognitive symptoms. Medical marijuana might benefit motor and nonmotor aspects of Parkinson’s disease patients. Currently, these assertions are not substantiated in human investigations and cannabis can also induce side effects. Until studies clarify the safety and efficacy of pharmacotherapy with cannabis products, medical marijuana remains largely without scientific endorsement. Research has yet to document the full benefits, risks, and clinical applications of marijuana as a treatment for patients with Parkinson’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31037227