The seek of neuroprotection: introducing cannabinoids.

Abstract

“The cannabinoid system is constituted by some endogenous ligands (endocannabinoids), usually arachydonic acid derivatives, and their specific receptors. The endogenous cannabinoid system (ECS) is involved in the control of synaptic transmission, modulating memory, motivation, movement, nociception, appetite and thermoregulation. ECS also exert extraneural effects, mainly immunomodulation and vasodilation. Two cannabinoid receptors have been cloned so far: CB(1) receptors are expressed in the central nervous system (CNS) but can also be found in glial cells and in peripheral tissues; CB(1) receptors are Gi/o protein coupled receptors that modulate the activity of several plasma membrane proteins and intracellular signaling pathways. CB(2) receptors are also Gi/o protein-coupled receptors; although it is accepted that CB(2) receptors are not expressed in forebrain neurons, they have been described in activated glia. Some of the cannabinoids activate other receptors, for instance vanilloid receptors (TRPV1). Lately, the ECS is emerging as a natural system of neuroprotection. This consideration is based on some properties of cannabinoids as their vasodilatory effect, the inhibition of the release of excitotoxic amino acids and cytokines, and the modulation of oxidative stress and toxic production of nitric oxide. Such effects have been demonstrated in adult and newborn animal models of acute and chronic neurodegenerative conditions, and postulate cannabinoids as valuable neuroprotective agents. Patents related to cannabinoid receptors are also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/18221224

Cannabinoids and neuroprotection.

Abstract

“Cannabinoid compounds are endowed with pharmacological properties that make them interesting candidates for therapeutic development. These properties have been known since antiquity. However, in the last decade extremely important advances in the understanding of the physiology, pharmacology, and molecular biology of the cannabinoid system have given this field of research fresh impetus and have renewed the interest in the possible clinical exploitation of these compounds. In the present review we summarize the effects elicited, at the cellular level, by cannabinoids acting through receptor-dependent and receptor-independent mechanisms. These data suggest different ways by which cannabinoids may act as neuroprotective agents (prevention of excitotoxicity by inhibition of glutamate release, antioxidant effects, anti-inflammatory actions, etc.). The experimental evidence supporting these hypotheses are presented and discussed with regard to both preclinical and clinical studies in disease states such as cerebral ischemia, brain trauma, and Multiple Sclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/11831553

Cannabinoid signaling in glioma cells

“Significant alterations of a balance in the cannabinoid system between the levels of endogenous ligands and their receptors occur during malignant transformation in various types of cancer, including gliomas. Cannabinoids exert anti-proliferative action in tumor cells. Induction of cell death by cannabinoid treatment…”

 http://www.ncbi.nlm.nih.gov/pubmed/22879071

Would some cannabinoids ameliorate symptoms of autism?

“Cannabidiol (CBD) is a major nonpsychotropic constituent of cannabis sativa, which unlike the other major constituent delta9-tetrahydrocannabinol (delta9-THC), is virtually inactive at both of its central nervous system receptors. In one study, cell-based calcium mobilization and electrophysiological assays were used to identify and characterize several novel cannabinoid TRPV2 agonists in cultured rat dorsal root ganglion neurons. Among these, CBD was found to be the most robust and potent, followed by delta9-THC and cannabinol. Those cannabinoids may, accordingly, possess the ability, due to their action as TRPV2 agonists, to increase the release of both oxytocin and vasopressin enhancing the stimulation of oxytocin receptor and V1a receptors at the same time. CBD displays a plethora of other actions including anticonvulsive, sedative, hypnotic, antipsychotic, anti-inflammatory and neuroprotective properties. CBD and delta9-THC are components of drugs commercialized, in certain countries, as treatments for neuropathic pain, overactive bladder, and spasticity in patients suffering from multiple sclerosis. Thus, despite their action on oxytocin and vasopressin release, CBD and delta9-THC may help in improving symptoms of ASD by their sedative, antipsychotic, anticonvulsant and tranquilizing effects. In addition, the cannabinoid system has already been shown to be implicated in social behavior in rats.
 
The administration of cannabinoids for children and adolescents suffering from ASD is a controversial legal and ethical issue. Instead, those cannabinoids may be tested when administered to animals presenting autistic symptoms. Animal models of autistic symptoms exist especially in rodents that have their oxytocin and/or vasopressin function impaired such as mice or rats lacking the oxytocin or vasopressin gene or one of their receptors]. Whenever cannabinoids were found efficient in animal models of autism, the rationale supporting their efficacy may outweigh their legal and ethical adversities, when administered to children in the setting of randomized controlled studies.”
 

Recent data on cannabinoids and their pharmacological implications in neuropathic pain.

Abstract

“Natural cannabinoids have been used for centuries for their psychotropic properties, but their possible therapeutic implications in analgesia have been recently documented. The present review intended to make an analysis of the neuroanatomy and physiology of the cannabinoid system (receptors, functions, agents acting on these receptors) and of its implications in neuropathic pain. There were also described the complex phenomena implicated in the generation and maintenance of neuropathic pain, by high lightening the implications of endogenous cannabinoids in this complex of painful conditions. The pharmacological analgesia test proves of cannabinoid implication in neuropathic pain was sustained by many studies presented in this paper. Therapeutic approaches using natural and synthetic cannabinoid receptor agonists were reviewed. Therapeutic perspectives in neuropathic pain might involve the development of new agents that influence the cannabinoid system. Thus, peripheral acting cannabinoid 1 receptors agonists, selective cannabinoid 2 receptor agonists and also modulators of endocannabinoids metabolism might be a way to success in the treatment of this complex entity called neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/20108515

The cannabinoid system and pain: towards new drugs?

Abstract

“The various components of the endocannabinoid system were discovered in the last twenty years. The cannabinoid system has attracted pharmacologists interest for its potential as therapeutic targets for several diseases ranging from obesity to Parkinson’s disease and from multiple sclerosis to pain. Research initially focused on cannabinoid receptor 1 (CB1), but, due to psychotropic side effects related to its activation, the attempts to develop an agonist drug for this receptor has been so far unsuccessful. Recently the possibility to target CB2 has emerged as an alternative for the treatment of pain. The main advantage of targeting CB2 resides in the possibility to elicit the analgesic effect without the psychotropic side effects. Evidence of the analgesic effect of CB2 selective agonists has been obtained in various models of both inflammatory and neuropathic chronic pain. To explain the mechanism at the basis of this analgesic effect different hypotheses have been proposed: effect on inflammatory cells, reduction of basal NGF tone, induction of beta-endorphin release from keratinocytes, direct action on nociceptors. Evidence in support of this last hypothesis comes from down regulation of capsaicin-induced CGRP release in spinal cord slices and Dorsal Root Ganglia (DRG) neurons in culture after treatment with CB2 selective agonists. CB2 agonists are probably acting through several mechanisms and thus CB2 represents an interesting and promising target in the chronic pain field. Further clarification of the mechanisms at the basis of CB2 analgesic effect would surely be an intriguing and stimulating area of research for the years to come.”

http://www.ncbi.nlm.nih.gov/pubmed/19358815

[The pharmacology of cannabinoid derivatives: are there applications to treatment of pain?].

“OBJECTIVE:

To present the cannabinoid system together with recent findings on the pharmacology of these compounds in the treatment of pain.

DATA SOURCES:

Search through Medline database of articles published in French and English since 1966. Also use of other publications such as books on cannabis.

DATA SYNTHESIS:

Recent advances have dramatically increased our understanding of cannabinoid pharmacology. The psychoactive constituents of Cannabis sativa have been isolated, synthetic cannabinoids described and an endocannabinoid system identified, together with its component receptors and ligands. Strong laboratory evidence now underwrites anecdotal claims of cannabinoid analgesia in inflammatory and neuropathic pain. Sites of analgesic action have been identified in brain, spinal cord and the periphery, with the latter two presenting attractive targets for divorcing the analgesic and psychotrophic effects of cannabinoids. Clinical trials are now required, but are hindered by a paucity of cannabinoids of suitable bioavailability and therapeutic ratio.

CONCLUSION:

The cannabinoid system is a major target in the treatment of pain and its therapeutic potential should be assessed in the near future by the performance of new clinical trials.”

http://www.ncbi.nlm.nih.gov/pubmed/12134594

Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes

“Hemp, Cannabis sativa, is a coarse bushy annual plant with palmate leaves and clusters of small green flowers that grows wild in regions of mild or tropical weather and can attain a height of 3 metres. The genus name Cannabis is complemented by sativa (which means useful). Cannabis has indeed been used throughout history for a variety of purposes…

 Cannabis has been utilised for centuries throughout the world to alleviate disease. Its derivatives were named “panacea”, or “cure-all”, and were sold as a legal medicine, mainly for pain…

The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated cannabinoid receptors, modulate nociceptive thresholds, inhibit release of pro-inflammatory molecules, and display synergistic effects with other systems that influence analgesia, especially the endogenous opioid system. Cannabinoid receptor agonists have shown therapeutic value against inflammatory and neuropathic pains, conditions that are often refractory to therapy…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430692/

[The endocannabinoid system as a novel target for the treatment of liver fibrosis].

Abstract

 “The cannabinoid system comprises specific G protein-coupled receptors (CB1 and CB2), exogenous (marijuana-derived cannabinoids) and endogenous (endocannabinoids) ligands, and a machinery dedicated to endocannabinoid synthesis and degradation. Studies over two decades have extensively documented the crucial role of the cannabinoid system in the regulation of a variety of pathophysiological conditions. However, its role in liver pathology has only been recently unravelled, probably given the low expression of CB1 and CB2 in the normal liver. We have recently demonstrated that CB1 and CB2 receptors display opposite effects in the regulation of liver fibrogenesis during chronic liver injury. Indeed, both receptors are up-regulated in the liver of cirrhotic patients, and expressed in liver fibrogenic cells. Moreover, CB1 receptors are profibrogenic and accordingly, the CB1 antagonist rimonabant reduces fibrosis progression in three experimental models. In keeping with these results, daily cannabis smoking is a risk factor for fibrosis progression in patients with chronic hepatitis C. In contrast, CB2 display antifibrogenic effects, by a mechanism involving reduction of liver fibrogenic cell accumulation. These results may offer new perspectives for the treatment of liver fibrosis, combining CB2 agonist and CB1 antagonist therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/17412522

Use of cannabinoids as a novel therapeutic modality against autoimmune hepatitis.

Abstract

“Autoimmune hepatitis is a severe immune mediated chronic liver disease with a prevalence range between 50 and 200 cases per million in Western Europe and North America and mortality rates of up to 80% in untreated patients. The induction of CB1 and CB2 cannabinoid receptors during liver injury and the potential involvement of endocannabinoids in the regulation of this process have sparked significant interest in further evaluating the role of cannabinoid systems during hepatic disease. Cannabinoids have been shown to possess significant immunosuppressive and anti-inflammatory properties. Cannabinoid abuse has been shown to exacerbate liver fibrogenesis in patients with chronic hepatitis C infection involving CB1 receptor. Nonetheless, CB2 receptor activation may play a protective role during chronic liver diseases. Thus, differential targeting of cannabinoid receptors may provide novel therapeutic modality against autoimmune hepatitis. In this review, we summarize current knowledge on the role of endocannabinoids and exocannabinoids in the regulation of autoimmune hepatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/19647124