Association between lipid accumulation and the cannabinoid system in Huh7 cells expressing HCV genes.

Abstract

“Evidence from clinical and laboratory studies has accumulated indicating that the activation of the cannabinoid system is crucial for steatosis, especially in non-alcoholic fatty liver disease. However, the association between hepatitis C virus (HCV) infection and the cannabinoid system has not been well investigated and it is unclear whether steatosis in chronic hepatitis C develops via activation of the endocannabinoid/cannabinoid receptor signaling pathway. In this study, we examined the expression of a cannabinoid receptor (CB1) and the lipid accumulation in the hepatic Huh7 cell line, expressing HCV genes. We utilized Huh7/Rep-Feo-1b cells stably expressing HCV non-structural proteins (NS) 3, NS4, NS5A, and NS5B, as well as Tet-On Core-2 cells, in which the HCV core protein expression is inducible. Significantly higher levels of stored triglycerides were found in Huh7/Rep-Feo-1b cells compared to Huh7 cells. Also, triglyceride accumulation and CB1 receptor expression were down-regulated in Huh7/Rep-Feo-1b cells after HCV reduction by IFNα. Moreover, lipid accumulation appeared to increase after CB1 agonist treatment, while it decreased after CB1 antagonist treatment, although significant differences were not found compared to untreated cells. In Tet-On Core-2 cells, induction of HCV core protein expression did not affect CB1 expression or triglyceride accumulation. The results of this study in cultured cells suggest that HCV infection may activate the cannabinoid system and precede steatosis, but the core protein by itself may not have any effect on the cannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/21331443

Cannabinoids and innate immunity: taking a toll on neuroinflammation.

Abstract

“The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS), and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids), have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs), a major family of pattern recognition receptors (PRRs) that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.”

http://www.ncbi.nlm.nih.gov/pubmed/21479354

The endocannabinoid system in normal and pathological brain ageing.

Abstract

“The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.”

http://www.ncbi.nlm.nih.gov/pubmed/23108550

[The role of the cannabinoid system in the pathogenesis and treatment of alcohol dependence].

Abstract

“The lack of satisfactory results of alcohol dependence treatment force us to search for new directions of research. Recent studies concentrate on endocannabinoid transmission. The results show an interplay between the endocannabinoid and dopaminergic signaling in activation of the limbic reward system. The mechanisms leading to development of dependence are very complex and poorly recognized. Endogenous cannabinoids seem to have an important role in the functioning of this system, both directly and indirectly affecting the level of different neurotransmitters. The effect of alcohol on the endocannabinoid system is also complex and involves changes at the molecular level. Experimental studies have demonstrated an important role of the CB1 receptors in the neurochemical mechanism of alcohol consumption and its regulation. SR141716 (rimonabant), a CB1 receptor antagonist, significantly lowers voluntary alcohol intake and motivation for its consumption in various experimental studies. Very encouraging results of preclinical studies were not completely confirmed in the clinical studies. However, further clinical studies are still necessary.”

http://www.ncbi.nlm.nih.gov/pubmed/21934185

Endogenous cannabinoid and opioid systems and their role in nicotine addiction.

Abstract

“Nicotine addiction is a complex behavioural alteration, in which many neuronal pathways and neurotransmitters are involved. For a long time, dopamine has been considered one of the most important neurotransmitters in mediating the rewarding effects of nicotine. In addition, a great amount of research suggests that the endogenous cannabinoid and opioid systems play an overall modulatory effect on the reward circuitry and participate in the addictive properties of most of the prototypical drugs of abuse. This review focuses on recent behavioural and biochemical data involving these systems in the different processes that contribute to tobacco addiction. A possible role for the endogenous cannabinoid and opioid systems in the rewarding properties of nicotine as well as in the development of nicotine physical dependence and relapse to nicotine-seeking behaviour will be examined. According to preclinical studies, clinical trials suggest that the manipulation of these systems with cannabinoid or opioid antagonists could be a potential therapeutical strategy for treating nicotine addiction.”

http://www.ncbi.nlm.nih.gov/pubmed/20017727

Enhancement of endocannabinoid neurotransmission through CB1 cannabinoid receptors counteracts the reinforcing and psychostimulant effects of cocaine.

Abstract

“Cannabinoids, in contrast to typical drugs of abuse, have been shown to exert complex effects on behavioural reinforcement and psychomotor function. We have shown that cannabinoid agonists lack reinforcing/rewarding properties in the intracranial self-stimulation (ICSS) paradigm and that the CB1 receptor (CB1R) agonist WIN55,212-2 attenuates the reward-facilitating actions of cocaine. We sought to determine the effects of the endocannabinoid neurotransmission enhancer AM-404 (1, 3, 10, 30 mg/kg) on the changes in ICSS threshold and locomotion elicited by cocaine and extend the study of the effects of WIN55,212-2 (0.3, 1, 3 mg/kg) on cocaine-induced hyperlocomotion. AM-404 did not exhibit reward-facilitating properties, and actually increased self-stimulation threshold at the highest dose. Cocaine significantly reduced self-stimulation threshold, without altering maximal rates of responding. AM-404 (10 mg/kg) attenuated this action of cocaine, an effect which was reversed by pretreatment with the selective CB1R antagonist SR141716A. WIN55,212-2 decreased locomotion at the two highest doses, an effect that was blocked by SR141716A; AM-404 had no effect on locomotion. Cocaine caused a significant, dose-dependent increase in locomotion, which was reduced by WIN55,212-2 and AM-404. SR141716A blocked the effects of WIN55,212-2 and AM-404 on cocaine-induced hyperlocomotion. SR141716A alone had no effect on ICSS threshold or locomotion. These results indicate that cannabinoids may interfere with brain reward systems responsible for the expression of acute reinforcing/rewarding properties of cocaine, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for the treatment of psychostimulant addiction and pathological states associated with psychomotor overexcitability.”

http://www.ncbi.nlm.nih.gov/pubmed/18377702

Endocannabinoids and drug dependence.

Abstract

“Drug dependence is a chronically relapsing disorder, manifested as an intense desire for the drug, with impaired ability to control the urges to take the drug, even at the expense of serious adverse consequences. These behavioral abnormalities develop gradually during repeated exposure to a drug of abuse, and can persist for months or years after discontinuation of use, suggesting that this addiction can be considered a form of drug-induced neural plasticity. Many neurotransmitters, including gamma-aminobutyric acid (GABA), glutamate, acetylcholine, dopamine, serotonin and endogenous opioid peptides, have been implicated in the effects of the various drugs of abuse. Dopamine has been consistently associated with the reinforcing effects of most of them. There is, in addition, a growing body of evidence that the endogenous cannabinoid system might participate in the motivational and dopamine-releasing effects of several drugs of abuse. This review will discuss the latest advances on the mechanisms of cannabinoid dependence and the possible role of the endocannabinoid system in the treatment of addiction, not only to marijuana but also to the other common illicit drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/16375682

Endocannabinoid system involvement in brain reward processes related to drug abuse.

“Cannabis is the most commonly abused illegal drug in the world and its main psychoactive ingredient, delta-9-tetrahydrocannabinol (THC), produces rewarding effects in humans and non-human primates. Over the last several decades, an endogenous system comprised of cannabinoid receptors, endogenous ligands for these receptors and enzymes responsible for the synthesis and degradation of these endogenous cannabinoid ligands has been discovered and partly characterized. Experimental findings strongly suggest a major involvement of the endocannabinoid system in general brain reward functions and drug abuse. First, natural and synthetic cannabinoids and endocannabinoids can produce rewarding effects in humans and laboratory animals. Second, activation or blockade of the endogenous cannabinoid system has been shown to modulate the rewarding effects of non-cannabinoid psychoactive drugs. Third, most abused drugs alter brain levels of endocannabinoids in the brain. In addition to reward functions, the endocannabinoid cannabinoid system appears to be involved in the ability of drugs and drug-related cues to reinstate drug-seeking behavior in animal models of relapse. Altogether, evidence points to the endocannadinoid system as a promising target for the development of medications for the treatment of drug abuse.”

“The endogenous cannabinoid is a recently discovered system that appears to play an important and pervasive role in many types of drug abuse and dependence. Endogenous cannabinoids are neuromodulators that are involved in the signalling of rewarding events and can produce reinforcing and rewarding effects in experimental animals, as they do in humans. Endogenous cannabinoids can also activate other brain systems involved in reward signalling, can modulate the reinforcing and rewarding effects of other non-cannabinoid abused drugs, and are released by drugs of abuse in brain areas involved in reward and reinforcement processes. Accumulating evidence points to the endocannabinoid system as a major target for the development of new pharmacological agents for the treatment of many different types of drug abuse and dependence.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189556/

Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors.

Abstract

“The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/21798285

The molecular connections between the cannabinoid system and endometriosis.

Abstract

“The endocannabinoid system consists of an array of endogenously produced bioactive lipids that activate cannabinoid 1 (CB1) and 2 (CB2) receptors. Alterations of this system have been described in almost every category of disease. These changes can be protective or maladaptive, making the endocannabinoid network an attractive therapeutic target. Little is known about the potential role of endocannabinoids in endometriosis development although this is a topic worthy of further investigation since endocannabinoid modulators have recently been shown to affect specific mechanisms critical to endometriosis establishment and maintenance. A literature review was herein performed with the aim of defining the regulation and function of the endocannabinoid signaling in in vitro and animal models of endometriosis. The components of the endocannabinoid system, CB1 and CB2 receptors and the enzymes N-acylphosphatidylethanolamine-phospholipase D and fatty acid amide hydrolase are differentially regulated throughout the menstrual cycle in the endometrium and are expressed in deep endometriotic nodules and in sensory and sympathetic neurons innervating the lesions. Selective cannabinoid receptor agonists, such as WIN 55212-2, appear to have a favorable action in limiting cell proliferation and in controlling pain symptoms. Conversely, endometrial cell migration tends to be stimulated by receptor agonists. The phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase 1/2 pathways seem to be involved in these processes. However, the underlying mechanisms of action are only just beginning to unfold. Given the complexity of the system, further studies are needed to clarify whether the endocannabinoid system might represent a promising target for endometriosis.”

http://www.ncbi.nlm.nih.gov/pubmed/22923487