Elucidating Cannabinoid Biology in Zebrafish (Danio rerio).

“Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health.

Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions.

Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling.

The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model-focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol.

Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors.

These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies.

This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation.”

http://www.ncbi.nlm.nih.gov/pubmed/26192460

Cannabinoid system as a potential target for drug development in the treatment of cardiovascular disease.

“Although cannabinoids have been recreationally employed for thousands of years, it was not until the discovery of their specific receptors, in the early nineties, that the molecular basis of cannabinoid activity have began to be understood.

Growing research in this field has demonstrated not only that the action of cannabinoids in mammals is mainly receptor-mediated, but also that endogenous cannabinoids, such as anandamide, are produced, metabolized, and taken up across the cell membrane through a facilitated uptake process.

The exogenous administration of cannabinoids, as well as the manipulation of their endogenous levels have been related to a variety of effects, such as analgesia, (temporary) impairment of cognition and learning, appetite enhancement and peripheral vasodilation.

Hence, the endocannabinoid system, including the CB1 and CB2 receptors, the metabolizing enzyme fatty acid amide hydrolase and the anandamide transporter, is a potential target for the development of novel therapeutic drugs in the treatment of various conditions, such as pain, feeding disorders and vascular disease among others.

Although most of the research in the field of cannabinoids has been focused on their effects in the central nervous system, a growing line of evidence indicates that cannabinoids can also play a major role in the control of physiopathological functions in the cardiovascular system.

In this context, endocannabinoids have been proposed as novel possible hypotensive agents, and have been involved in the hypotension observed in septic shock, acute myocardial infarction and cirrhosis. In addition, a protective role for endocannabinoids has been described in ischemia.”

http://www.ncbi.nlm.nih.gov/pubmed/15320476

Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors.

“Taxanes such as paclitaxel, which are chemotherapeutic drugs, cause dose-dependent painful neuropathy in some patients.

We investigated whether coadministration of minocycline and indomethacin produces antinociceptive effects in mice with paclitaxel-induced neuropathic thermal hyperalgesia and if the cannabinoid system is involved…

In conclusion our results indicate that coadministration of minocycline and indomethacin abrogates established paclitaxel-induced neuropathic thermal hyperalgesia in mice, and the potentiation of the antinociceptive effects of this combination involves the cannabinoid system.”

Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

“Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored…

Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.”

http://www.ncbi.nlm.nih.gov/pubmed/26033291

The role of cannabinoids in adult neurogenesis.

“Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes.

Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, likely through activation of both CB1 and CB2receptors.

In recent years a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarises the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs, and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets.

Overall these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles, and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain.”

Role of the endogenous cannabinoid system in nicotine addiction: novel insights.

“Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction.

The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans.

Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine’s effects.

Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25859226

http://www.thctotalhealthcare.com/category/addiction/

The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats.

“Long-term potentiation (LTP) has been most thoroughly studied in the hippocampus, which has a key role in learning and memory. Endocannabinoids are one of the endogenous systems that modulate this kind of synaptic plasticity. The activation of the vanillioid system has also been shown to mediate synaptic plasticity in the hippocampus. In addition, immunohistochemical studies have shown that cannabinoid receptor type 1 (CB1) and vanilloid receptor 1 (TRPV1) are closely located in the hippocampus.

It seems that agonists of the vanilloid system modulate cannabinoid outputs that cause an increase in synaptic plastisity, while in contemporary consumption of two agonist, TRPV1 agonist can change production of endocannabinoid, which in turn result to enhancement of LTP induction. These findings suggest that the two systems may interact or share certain common signaling pathways in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/25843413

Role of endogenous cannabinoid system in the gut.

“The plant Cannabis has been used in clinic for centuries, and has been known to be beneficial in a variety of gastrointestinal diseases, such as emesis, diarrhea, inflammatory bowel disease and intestinal pain.

In this text, we’ll review the components of the endogenous cannabinoid system as well as its role in the regulation of gastrointestinal activities, thus providing relative information for further study.

Moreover, modulation of the endogenous cannabinoid system in gastrointestinal tract may provide a useful therapeutic target for gastrointestinal disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23963077

http://www.thctotalhealthcare.com/category/gastrointestinal-disorders/

Influence of nitric oxide synthase or cyclooxygenase inhibitors on cannabinoids activity in streptozotocin-induced neuropathy.

“The results of this study seemed to indicate that the interaction between cannabinoid, COX-2 and NOS(s) systems might exist…

Concomitant administration of small doses of CB1 and/or CB2 receptor agonists and COX-2 or NOS inhibitors can be effective in the alleviation of diabetic neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/25712641

http://www.thctotalhealthcare.com/category/neuropathic-pain/

Cannabinoids & Stress: Impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

“Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles.

Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs.

This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioural testing.

Exogenouscannabinoid administration induced distinct behavioural phenotypes in stressed and unstressed mice…

These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner.

This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects.”

http://www.ncbi.nlm.nih.gov/pubmed/25707713

http://www.thctotalhealthcare.com/category/anxiety-2/