Sub-chronic treatment with cannabidiol but not with URB597 induced a mild antidepressant-like effect in diabetic rats.

Cover image

“Depression associated with diabetes has been described as a highly debilitating comorbidity. Due to its complex and multifactorial mechanisms, the treatment of depression associated with diabetes represents a clinical challenge.

Cannabidiol (CBD), the non-psychotomimetic compound derived from Cannabis sativa, has been pointed out as a promising compound for the treatment of several psychiatric disorders.

Here, we evaluated the potential antidepressant-like effect of acute or sub-chronic treatment with CBD in diabetic rats using the modified forced swimming test (mFST).

Also, to better understand the functionality of the endocannabinoid system in diabetic animals we also evaluated the effect of URB597, a fatty acid amide hydrolase inhibitor.

Acute treatment with either CBD or URB induced an antidepressant-like effect in NGL rats, but not in DBT rats. However, sub-chronic treatment with CBD (only at a dose of 30 mg/kg), but not with URB597, induced a mild antidepressant-like effect in DBT animals. Neither body weight nor blood glucose levels were altered by treatments.

Considering the importance of the endocannabinoid system to the mechanism of action of many antidepressant drugs, the mild antidepressant-like effect of the sub-chronic treatment with CBD, but not with URB597 does not invalidate the importance of deepening the studies involving the endocannabinoid system particularly in DBT animals.”

https://www.ncbi.nlm.nih.gov/pubmed/29885450

Assessment of Cannabinoids Agonist and Antagonist in Invasion Potential of K562 Cancer Cells

Image result for iran biomed journal

“The prominent hallmark of malignancies is the metastatic spread of cancer cells. Recent studies have reported that the nature of invasive cells could be changed after this phenomenon, causing chemotherapy resistance.

It has been demonstrated that the up-regulated expression of matrix metalloproteinase (MMP) 2/MMP-9, as a metastasis biomarker, can fortify the metastatic potential of leukemia.

Furthermore, investigations have confirmed the inhibitory effect of cannabinoid and endocannabinoid on the proliferation of cancer cells in vitro and in vivo.

Our findings clarifies that CB1 receptors are responsible for anti-invasive effects in the K562 cell line.”

https://www.ncbi.nlm.nih.gov/pubmed/29883990

Localization of cannabinoid receptors CB1, CB2, GPR55, and PPARα in the canine gastrointestinal tract.

Histochemistry and Cell Biology

“The endocannabinoid system (ECS) is composed of cannabinoid receptors, their endogenous ligands, and the enzymes involved in endocannabinoid turnover.

Modulating the activity of the ECS may influence a variety of physiological and pathophysiological processes.

A growing body of evidence indicates that activation of cannabinoid receptors by endogenous, plant-derived, or synthetic cannabinoids may exert beneficial effects on gastrointestinal inflammation and visceral pain.

The present ex vivo study aimed to investigate immunohistochemically the distribution of cannabinoid receptors CB1, CB2, G protein-coupled receptor 55 (GPR55), and peroxisome proliferation activation receptor alpha (PPARα) in the canine gastrointestinal tract.

Cannabinoid receptors showed a wide distribution in the gastrointestinal tract of the dog.

Since cannabinoid receptors have a protective role in inflammatory bowel disease, the present research provides an anatomical basis supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders and visceral hypersensitivity in canine acute or chronic enteropathies.”

https://www.ncbi.nlm.nih.gov/pubmed/29882158

https://link.springer.com/article/10.1007%2Fs00418-018-1684-7

Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats.

Neurochemical Research

Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion.

Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh).

Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD.

Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.”

https://www.ncbi.nlm.nih.gov/pubmed/29876791

Cannabidiol Induces Rapid and Sustained Antidepressant-Like Effects Through Increased BDNF Signaling and Synaptogenesis in the Prefrontal Cortex.

Molecular Neurobiology

“Currently available antidepressants have a substantial time lag to induce therapeutic response and a relatively low efficacy. The development of drugs that addresses these limitations is critical to improving public health.

Cannabidiol (CBD), a non-psychotomimetic component of Cannabis sativa, is a promising compound since it shows large-spectrum therapeutic potential in preclinical models and humans.

However, its antidepressant properties have not been completely investigated. Therefore, the aims of this study were to investigate in male rodents (i) whether CBD could induce rapid and sustained antidepressant-like effects after a single administration and (ii) whether such effects could be related to changes in synaptic proteins/function.

These results indicate that CBD induces fast and sustained antidepressant-like effect in distinct animal models relevant for depression. These effects may be related to rapid changes in synaptic plasticity in the mPFC through activation of the BDNF-TrkB signaling pathway.

The data support a promising therapeutic profile for CBD as a new fast-acting antidepressant drug.”

https://www.ncbi.nlm.nih.gov/pubmed/29869197

https://link.springer.com/article/10.1007%2Fs12035-018-1143-4

Cannabidiol as a Promising Strategy to Treat and Prevent Movement Disorders?

 Image result for frontiers in pharmacology

“Movement disorders such as Parkinson’s disease and dyskinesia are highly debilitating conditions linked to oxidative stress and neurodegeneration. When available, the pharmacological therapies for these disorders are still mainly symptomatic, do not benefit all patients and induce severe side effects. Cannabidiol is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. Although the studies that investigate the effects of this compound on movement disorders are surprisingly few, cannabidiol emerges as a promising compound to treat and/or prevent them. Here, we review these clinical and pre-clinical studies and draw attention to the potential of cannabidiol in this field.”

https://www.ncbi.nlm.nih.gov/pubmed/29867488

Reinforcing effects of opioid/cannabinoid mixtures in rhesus monkeys responding under a food/drug choice procedure.

Psychopharmacology

“Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ9-THC) enhance the antinociceptive potency of mu opioid receptor agonists such as morphine, indicating that opioid/cannabinoid mixtures might be effective for treating pain. However, such enhancement will be beneficial only if cannabinoids do not also enhance adverse effects of opioids, including those related to abuse.

In rhesus monkeys, cannabinoids fail to enhance and often decrease self-administration of the mu opioid receptor agonist heroin, suggesting that opioid/cannabinoid mixtures do not have greater reinforcing effects (abuse potential) compared with opioids alone. Previous studies on the self-administration of opioid/cannabinoid mixtures used single-response procedures, which do not easily differentiate changes in reinforcing effects from other effects (e.g., rate decreasing).

CONCLUSION:

Overall, these results extend previous studies to include choice behavior and show that cannabinoids do not substantially enhance the reinforcing effects of mu opioid receptor agonists.”

Effects of cannabidiol plus naltrexone on motivation and ethanol consumption.

British Journal of Pharmacology banner

“The aim of this study was to explore if the administration of naltrexone (NTX) together with cannabidiol (CBD) may improve the efficacy in reducing alcohol consumption and motivation rather than any of the drugs given separately.

The administration of CBD + NTX significantly reduced motivation and ethanol intake in the oral self-administration procedure in a greater proportion than the drugs given alone. Only the combination of both drugs significantly reduced Oprm1, TH and 5-HT1A gene expressions in the NAc, VTA and DR, respectively. Interestingly, the administration of WAY100635 significantly blocked the actions of CBD + NTX but had no effects by itself.

CONCLUSION AND IMPLICATIONS:

The combination of low doses of CBD plus NTX resulted more effective to reduce ethanol consumption and motivation to drink. These effects, appears to be mediated, at least in part, by 5-HT1A receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/29859012

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14380

Naltrexone belongs to a class of drugs known as opiate antagonists. It works in the brain to prevent opiate effects (e.g., feelings of well-being, pain relief). It also decreases the desire to take opiates. This medication is also used to treat alcohol abuse. It can help people drink less alcohol or stop drinking altogether. It also decreases the desire to drink alcohol when used with a treatment program that includes counseling, support, and lifestyle changes.” https://www.webmd.com/drugs/2/drug-7399/naltrexone-oral/details

“Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Taken together, these results reveal that the administration of CBD reduced the reinforcing properties, motivation and relapse for ethanol. These findings strongly suggest that CBD may result useful for the treatment of alcohol use disorders.”   https://www.ncbi.nlm.nih.gov/pubmed/28194850

The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoid-based therapies to improve on the poor current therapeutic outcomes.

British Journal of Pharmacology banner

“At the beginning of the 21st century, the therapeutic management of neurodegenerative disorders remains a major biomedical challenge, particularly given the worldwide aging of the population over the past 50 years that is expected to continue in the forthcoming years.

This review will focus on the promise of cannabinoid based therapies to address this challenge.

Such promise is based on the broad neuroprotective profile of cannabinoids, which may cooperate to combat excitotoxicity, oxidative stress, glia-driven inflammation and protein aggregation.

Such effects may be produced by the activity of cannabinoids through their canonical targets (e.g. cannabinoid receptors, endocannabinoid enzymes) but also, via non-canonical elements and activities in distinct cell types critical for cell survival or neuronal replacement (e.g. neurons, glia, neural precursor cells).

Ultimately, the therapeutic events driven by endocannabinoid signalling reflect the activity of an endogenous system that regulates the preservation, rescue, repair and replacement of neurons and glia.”

https://www.ncbi.nlm.nih.gov/pubmed/29856067

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14382

Methods to Quantify Cell Signaling and GPCR Receptor Ligand Bias: Characterization of Drugs that Target the Endocannabinoid Receptors in Huntington’s Disease.

Huntington’s Disease

“G protein-coupled receptors (GPCRs) interact with multiple intracellular effector proteins such that different ligands may preferentially activate one signal pathway over others, a phenomenon known as signaling bias. Signaling bias can be quantified to optimize drug selection for preclinical research.

Here, we describe moderate-throughput methods to quantify signaling bias of known and novel compounds. In the example provided, we describe a method to define cannabinoid-signaling bias in a cell culture model of Huntington’s disease (HD).

Decreasing type 1 cannabinoid receptor (CB1) levels is correlated with chorea and cognitive deficits in HD. There is evidence that elevating CB1 levels and/or signaling may be beneficial for HD patients while decreasing CB1 levels and/or signaling may be detrimental.

Recent studies have found that Gαi/o-biased CB1 agonists activate extracellular signal-regulated kinase (ERK), increase CB1 protein levels, and improve viability of cells expressing mutant huntingtin. In contrast, CB1 agonists that are β-arrestin1-biased were found to reduce CB1 protein levels and cell viability.

Measuring agonist bias of known and novel CB1 agonists will provide important data that predict CB1-specific agonists that might be beneficial in animal models of HD and, following animal testing, in HD patients. This method can also be applied to study signaling bias for other GPCRs.”

https://www.ncbi.nlm.nih.gov/pubmed/29856035

https://link.springer.com/protocol/10.1007%2F978-1-4939-7825-0_25