Synthesis of 13 C6 -labeled, dual-target inhibitor of Cannabinoid-1 receptor (CB1 R) and inducible nitric oxide synthase (iNOS).

Publication cover image

“Cannabinoid-1 receptor (CB1 R) antagonists/inverse agonists have great potential in the treatment of metabolic disorders like dyslipidemia, type 2 diabetes and non-alcoholic steatohepatitis (NASH).

CB1 R inverse agonists have also been reported to be effective in mitigating fibrotic disorders in murine models.

Inducible nitric oxide synthase is another promising target implicated in fibrotic and inflammatory disorders.

We have disclosed MRI-1867 as a potent and selective, peripherally acting dual-target inhibitor of the cannabinoid receptor (CB1 R) and inducible nitric oxide synthase (iNOS).

Herein, we report the synthesis of [13 C6 ]-MRI-1867 as a racemate from commercially available chlorobenzene-13 C6 as the starting, stable-isotope label reagent. The racemic [13 C6 ]-MRI-1867 was further processed to the stable-isotope labeled enantiopure compounds utilizing chiral chromatography. Both racemic [13 C6]-MRI-1867 and S-13 C6 -MRI-1867 will be used to quantitate unlabeled S-MRI-1867 during clinical DMPK studies and will be used as an LC-MS/MS bioanalytical standard.”

https://www.ncbi.nlm.nih.gov/pubmed/29790591

https://onlinelibrary.wiley.com/doi/abs/10.1002/jlcr.3639

Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview.

Image result for cambridge university press

“Cannabidiol (CBD) represents a new promising drug due to a wide spectrum of pharmacological actions. In order to relate CBD clinical efficacy to its pharmacological mechanisms of action, we performed a bibliographic search on PUBMED about all clinical studies investigating the use of CBD as a treatment of psychiatric symptoms.

Findings to date suggest that (a) CBD may exert antipsychotic effects in schizophrenia mainly through facilitation of endocannabinoid signalling and cannabinoid receptor type 1 antagonism; (b) CBD administration may exhibit acute anxiolytic effects in patients with generalised social anxiety disorder through modification of cerebral blood flow in specific brain sites and serotonin 1A receptor agonism; (c) CBD may reduce withdrawal symptoms and cannabis/tobacco dependence through modulation of endocannabinoid, serotoninergic and glutamatergic systems; (d) the preclinical pro-cognitive effects of CBD still lack significant results in psychiatric disorders.

In conclusion, current evidences suggest that CBD has the ability to reduce psychotic, anxiety and withdrawal symptoms by means of several hypothesised pharmacological properties. However, further studies should include larger randomised controlled samples and investigate the impact of CBD on biological measures in order to correlate CBD’s clinical effects to potential modifications of neurotransmitters signalling and structural and functional cerebral changes.”

https://www.ncbi.nlm.nih.gov/pubmed/29789034

https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/pharmacological-properties-of-cannabidiol-in-the-treatment-of-psychiatric-disorders-a-critical-overview/D7FD68F40CF30CBB48A1025C66873F26

Targeting cannabinoid receptors in gastrointestinal cancers for therapeutic uses: current status and future perspectives

Publication Cover

“A number of studies have consistently shown that cannabinoids are able to prevent or reduce carcinogenesis in different animal models of colon cancer.

Cannabinoids, via CB1 and possibly CB2 receptors, suppress proliferation and migration and stimulate apoptosis in colorectal cancer cells.

Convincing scientific evidence suggests that cannabinoids, in addition to their well-known use in palliative care in oncology (e.g. improvement of appetite, attenuation of nausea associated to antitumoral medicines, alleviation of moderate neuropathic pain) can reduce, via antiproliferative and proapoptotic as well as by inhibiting angiogenesis, invasion and metastasis or by attenuating inflammation, the growth of cancer cells and hinder the development of experimental colon carcinogenesis in vivo.”

https://www.tandfonline.com/doi/full/10.1080/17474124.2017.1367663?src=recsys

Cannabinoids as a Promising Therapeutic Approach for the Treatment of Glioblastoma Multiforme: A Literature Review

Page Header

“Gliobalstoma multiforme (GBM) or grade 4 astrocytoma is the most malignant form of primary brain tumor. Treatment of glioblastoma is difficult despite of surgery, radiotherapy and chemotherapy. Patients with glioblastoma survive for less than 12 months.

Considering to biology function of glioblastoma, researchers have recently offered new therapeutic approaches such as cannabinoid therapy for glioblastoma.

Cannabinoids are active compounds of Cannabis sativa that operate in the body similar to endogenous canabinoids –the endocannabinoids- through cell surface receptors.

It is interesting that cannabinoids could exert a wide spectrum from antiproliferative effects in condition of the cell culture, animal models of glioblastoma and clinical trials.

As a result, Cannabinoids seem to modulate intracellular signaling pathways and the endoplasmic reticulum stress response in glioma cells.

Those play antitumoral effects through apoptosis induction and inhibition of glioblastoma angiogenesis.

The goal of this study was to discuss cannabinoid therapy and also what cellular mechanisms are involved in the tumoricidal effect of the cannabinoids.

In this review article, we will focus on cannabinoids, their receptor dependent functional roles against glioblastoma acccording to growth, angiogenesis, metastasis, and future purposes in exploring new possible therapeutic opportunities.”

http://journals.sbmu.ac.ir/Neuroscience/article/view/13655

Self-initiated use of topical cannabidiol oil for epidermolysis bullosa.

 Publication cover image

“Epidermolysis bullosa is a rare blistering skin disorder that is challenging to manage because skin fragility and repeated wound healing cause itching, pain, limited mobility, and recurrent infections.

Cannabidiol, an active cannabinoid found in cannabis, is postulated to have antiinflammatory and analgesic effects.

We report 3 cases of self-initiated topical cannabidiol use in patients with epidermolysis bullosa in an observational study.

One patient was weaned completely off oral opioid analgesics. All 3 reported faster wound healing, less blistering, and amelioration of pain with cannabidiol use.

Although these results demonstrate promise, further randomized, double-blind clinical trials are necessary to provide scientific evidence of our observed benefits of cannabidiol for the treatment of epidermolysis bullosa.”

https://www.ncbi.nlm.nih.gov/pubmed/29786144

https://onlinelibrary.wiley.com/doi/abs/10.1111/pde.13545

Quality Traits of “Cannabidiol Oils”: Cannabinoids Content, Terpene Fingerprint and Oxidation Stability of European Commercially Available Preparations.

molecules-logo

“Cannabidiol (CBD)-based oil preparations are becoming extremely popular, as CBD has been shown to have beneficial effects on human health.

CBD-based oil preparations are not unambiguously regulated under the European legislation, as CBD is not considered as a controlled substance. This means that companies can produce and distribute CBD products derived from non-psychoactive hemp varieties, providing an easy access to this extremely advantageous cannabinoid.

This leaves consumers with no legal quality guarantees. The objective of this project was to assess the quality of 14 CBD oils commercially available in European countries. An in-depth chemical profiling of cannabinoids, terpenes and oxidation products was conducted by means of GC-MS and HPLC-Q-Exactive-Orbitrap-MS in order to improve knowledge regarding the characteristics of CBD oils. Nine out of the 14 samples studied had concentrations that differed notably from the declared amount, while the remaining five preserved CBD within optimal limits.

Our results highlighted a wide variability in cannabinoids profile that justifies the need for strict and standardized regulations. In addition, the terpenes fingerprint may serve as an indicator of the quality of hemp varieties, while the lipid oxidation products profile could contribute in evaluation of the stability of the oil used as milieu for CBD rich extracts.”

The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice.

Cellular Immunology

“We evaluated the effects of the non-psychoactive cannabinoid cannabidiol (CBD) on the inflammatory response and recovery of function following spinal cord injury (SCI).

Female C57Bl/6 mice were exposed to spinal cord contusion injury (T9-10) and received vehicle or CBD (1.5 mg/kg IP) injections for 10 weeks following injury. The effect of SCI and CBD treatment on inflammation was assessed via microarray, qRT-PCR and flow cytometry. Locomotor and bladder function and changes in thermal and mechanical hind paw sensitivity were also evaluated.

There was a significant decrease in pro-inflammatory cytokines and chemokines associated with T-cell differentiation and invasion in the SCI-CBD group as well as a decrease in T cell invasion into the injured cord. A higher percentage of SCI mice in the vehicle-treated group (SCI-VEH) went on to develop moderate to severe (0-65.9% baseline thermal threshold) thermal sensitivity as compared with CBD-treated (SCI-CBD) mice. CBD did not affect recovery of locomotor or bladder function following SCI.

Taken together, CBD treatment attenuated the development of thermal sensitivity following spinal cord injury and this effect may be related to protection against pathological T-cell invasion.”

https://www.ncbi.nlm.nih.gov/pubmed/29784129

Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2.

Image result for neuropsychopharmacology

“Psychosocial stress contributes to the development of psychiatric disorders. Repeated social defeat (RSD) is a murine stressor that causes a release of inflammatory monocytes into circulation. Moreover, RSD-induced anxiety-like behavior is dependent on the recruitment of these monocytes to the brain.

Activation of the endocannabinoid (ECB) system may modulate both neuroendocrine and inflammatory responses mediated by stress. Therefore, we hypothesized that a cannabinoid receptor agonist would attenuate RSD-induced inflammation, anxiety, and stress sensitization.

In conclusion, activation of cannabinoid receptors limited the immune and neuroinflammatory responses to RSD and reversed the short-term and long-term behavioral deficits associated with RSD.”

https://www.ncbi.nlm.nih.gov/pubmed/29786066

https://www.nature.com/articles/s41386-018-0064-2

Cannabinoid WIN-55,212-2 mesylate inhibits tumor necrosis factor-α-induced expression of nitric oxide synthase in dorsal root ganglion neurons.

 

“Tumor necrosis factor-α (TNF-α) is an established pain modulator in the peripheral nervous system. Elevated levels of TNF-α in dorsal root ganglion (DRG) neurons reportedly is critical for neuropathic pain processing. It has been shown that the production of nitric oxide, a key player in the development and maintenance of nociception, depends on the expression of nitric oxide synthases (NOSs) and their activities.

Accumulating evidence also supports an important role of cannabinoids in modulating neuropathic pain.

In this study, we explored the effects and the underlying mechanisms of crosstalk between TNF-α and cannabinoid on the expression/activity of NOS in DRG neurons.

Our findings suggest that TNF-α induces the expression/activity of nNOS in DRG neurons by increasing its mRNA stability by a p38 MAPK-dependent mechanism; WIN-55 inhibits this effect of TNF-α by inhibiting p38 MAPK via CB2.

By linking the functions of TNF-α, NOS and cannabinoid in DRG neurons, this study adds new insights into the molecular mechanisms underlying the pharmacologic effects of cannabinoids on neuropathic pain as well as into the pathophysiology of neuropathic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29786105

https://www.spandidos-publications.com/10.3892/ijmm.2018.3687

Controlled-Deactivation CB1 Receptor Ligands as a Novel Strategy to Lower Intraocular Pressure.

 pharmaceuticals-logo

“Nearly half a century has passed since the demonstration that cannabis and its chief psychoactive component Δ⁸-THC lowers intraocular pressure (IOP).

Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a condition that places millions at risk of blindness. It is likely that Δ⁸-THC exerts much of its IOP-lowering effects via the activation of CB1 cannabinoid receptors.

However, the initial promise of CB1 as a target for treating glaucoma has not thus far translated into a credible therapeutic strategy. We have recently shown that blocking monoacylglycerol lipase (MAGL), an enzyme that breaks the endocannabinoid 2-arachidonoyl glycerol (2-AG), substantially lowers IOP.

Another strategy is to develop cannabinoid CB1 receptor agonists that are optimized for topical application to the eye. Recently we have reported on a controlled-deactivation approach where the “soft” drug concept of enzymatic deactivation was combined with a “depot effect” that is commonly observed with Δ⁸-THC and other lipophilic cannabinoids.

This approach allowed us to develop novel cannabinoids with a predictable duration of action and is particularly attractive for the design of CB1 activators for ophthalmic use with limited or no psychoactive effects.

We have tested a novel class of compounds using a combination of electrophysiology in autaptic hippocampal neurons, a well-characterized model of endogenous cannabinoid signaling, and measurements of IOP in a mouse model.

We now report that AM7410 is a reasonably potent and efficacious agonist at CB1 in neurons and that it substantially (30%) lowers IOP for as long as 5 h after a single topical treatment. This effect is absent in CB1 knockout mice.

Our results indicate that the direct targeting of CB1 receptors with controlled-deactivation ligands is a viable approach to lower IOP in a murine model and merits further study in other model systems.”

https://www.ncbi.nlm.nih.gov/pubmed/29786643

http://www.mdpi.com/1424-8247/11/2/50