Δ 9 -Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo

“Δ9 -Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells.

Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so-called endocannabinoids. Specifically, the endocannabinoid 2-arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored.

Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC-induced-myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC-mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects.

Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.”

https://pubmed.ncbi.nlm.nih.gov/32956517/

“In summary, our findings identify THC as a novel pharmacological candidate to enhance OL development and CNS myelination in vivo.”

https://onlinelibrary.wiley.com/doi/10.1002/glia.23911

Cannabidiol Modifies the Formation of NETs in Neutrophils of Psoriatic Patients

ijms-logo“Psoriasis is associated with increased production of reactive oxygen species which leads to oxidative stress.

As antioxidants can provide protection, the aim of this study was to evaluate the effects of cannabidiol (CBD) on neutrophil extracellular trap (NET) formation in psoriatic and healthy neutrophils.

These results suggest that psoriatic patients neutrophils are at a higher risk of NETosis both in vitro and in vivo.

CBD reduces NETosis, mainly in psoriatic neutrophils, possibly due to its antioxidant properties.

The anti-NET properties of CBD suggest the positive effect of CBD in the treatment of autoimmune diseases.”

https://pubmed.ncbi.nlm.nih.gov/32947961/

https://www.mdpi.com/1422-0067/21/18/6795

A pediatric patient with autism spectrum disorder and epilepsy using cannabinoid extracts as complementary therapy: a case report

 Journal of Medical Case Reports | Home page“The pharmacological treatment for autism spectrum disorders is often poorly tolerated and has traditionally targeted associated conditions, with limited benefit for the core social deficits.

We describe the novel use of a cannabidiol-based extract that incidentally improved core social deficits and overall functioning in a patient with autism spectrum disorder, at a lower dose than has been previously reported in autism spectrum disorder.

Case presentation: The parents of a 15-year-old boy, of South African descent, with autism spectrum disorder, selective mutism, anxiety, and controlled epilepsy, consulted a medical cannabis physician to trial cannabis extract to replace seizure medications. Incidentally, at a very low cannabidiol-based extract dose, he experienced unanticipated positive effects on behavioral symptoms and core social deficits.

Conclusion: This case report provides evidence that a lower than previously reported dose of a phytocannabinoid in the form of a cannabidiol-based extract may be capable of aiding in autism spectrum disorder-related behavioral symptoms, core social communication abilities, and comorbid anxiety, sleep difficulties, and weight control. Further research is needed to elucidate the clinical role and underlying biological mechanisms of action of cannabidiol-based extract in patients with autism spectrum disorder.”

https://pubmed.ncbi.nlm.nih.gov/32958062/

https://jmedicalcasereports.biomedcentral.com/articles/10.1186/s13256-020-02478-7

Natural cannabinoids suppress the cytokine storm in sepsis-like in vitro model

 John Libbey Eurotext“Natural cannabinoids may have beneficial effects on various tissues and functions including a positive influence on the immune system and the inflammatory process.

The purpose of this study was to investigate the effects of natural cannabinoids on the production of pro-inflammatory cytokines by lipopolysaccharide (LPS)-stimulated whole human blood cells.

Levels of the pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured before and after exposure of LPS-stimulated whole blood to different concentrations of Cannabidiol (CBD) or a combination of CBD and Tetrahydrocannabinol (THC) extract.

LPS stimulated the production of the pro-inflammatory cytokines. Exposure to both CBD and CBD/THC extracts significantly suppressed cytokine production in a dose-dependent manner. Exposure to cannabinoid concentrations of 50 μg/ml or 100 μg/ml resulted in a near-complete inhibition of cytokine production.

This study demonstrates that natural cannabinoids significantly suppress pro-inflammatory cytokine production in LPS-stimulated whole blood in a dose-dependent manner. The use of human whole blood, rather than isolated specific cells or tissues, may closely mimic an in vivo sepsis environment.

These findings highlight the role that natural cannabinoids may play in suppressing inflammation and call for additional studies of their use as possible novel therapeutic agents for acute and chronic inflammation.”

https://pubmed.ncbi.nlm.nih.gov/32933892/

https://www.jle.com/fr/revues/ecn/e-docs/natural_cannabinoids_suppress_the_cytokine_storm_in_sepsis_like_in_vitro_model__318510/article.phtml

Cannabidiol Modulates Cytokine Storm in Acute Respiratory Distress Syndrome Induced by Simulated Viral Infection Using Synthetic RNA

View details for Cannabis and Cannabinoid Research cover image“In the absence of effective antivirals and vaccination, the pandemic of COVID-19 remains the most significant challenge to our health care system in decades. There is an urgent need for definitive therapeutic intervention.

Clinical reports indicate that the cytokine storm associated with acute respiratory distress syndrome (ARDS) is the leading cause of mortality in severe cases of some respiratory viral infections, including COVID-19.

In recent years, cannabinoids have been investigated extensively due to their potential effects on the human body. Among all cannabinoids, cannabidiol (CBD) has demonstrated potent anti-inflammatory effects in a variety of pathological conditions. Therefore, it is logical to explore whether CBD can reduce the cytokine storm and treat ARDS.

Materials and Methods: In this study, we show that intranasal application of Poly(I:C), a synthetic analogue of viral double-stranded RNA, simulated symptoms of severe viral infections inducing signs of ARDS and cytokine storm.

Discussion: The administration of CBD downregulated the level of proinflammatory cytokines and ameliorated the clinical symptoms of Poly I:C-induced ARDS.

Conclusion: Our results suggest a potential protective role for CBD during ARDS that may extend CBD as part of the treatment of COVID-19 by reducing the cytokine storm, protecting pulmonary tissues, and re-establishing inflammatory homeostasis.”

https://pubmed.ncbi.nlm.nih.gov/32923657/

https://www.liebertpub.com/doi/10.1089/can.2020.0043

The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease

ijms-logo“Cannabidiol (CBD) is a non-intoxicating and generally well-tolerated constituent of cannabis which exhibits potential beneficial properties in a wide range of diseases, including cardiovascular disorders.

Due to its complex mechanism of action, CBD may affect the cardiovascular system in different ways. Thus, we reviewed the influence of CBD on this system in health and disease to determine the potential risk of cardiovascular side effects during CBD use for medical and wellness purposes and to elucidate its therapeutic potential in cardiovascular diseases.

Administration of CBD to healthy volunteers or animals usually does not markedly affect hemodynamic parameters. Although CBD has been found to exhibit vasodilatory and antioxidant properties in hypertension, it has not affected blood pressure in hypertensive animals. Hypotensive action of CBD has been mainly revealed under stress conditions.

Many positive effects of CBD have been observed in experimental models of heart diseases (myocardial infarction, cardiomyopathy, myocarditis), stroke, neonatal hypoxic ischemic encephalopathy, sepsis-related encephalitis, cardiovascular complications of diabetes, and ischemia/reperfusion injures of liver and kidneys.

In these pathological conditions CBD decreased organ damage and dysfunction, oxidative and nitrative stress, inflammatory processes and apoptosis, among others. Nevertheless, further clinical research is needed to recommend the use of CBD in the treatment of cardiovascular diseases.”

https://pubmed.ncbi.nlm.nih.gov/32937917/

https://www.mdpi.com/1422-0067/21/18/6740

Use of Cannabidiol for the Treatment of Anxiety: A Short Synthesis of Pre-Clinical and Clinical Evidence

View details for Cannabis and Cannabinoid Research cover image“Anxiety disorders have the highest lifetime prevalence of any mental illness worldwide, leading to high societal costs and economic burden. Current pharmacotherapies for anxiety disorders are associated with adverse effects and low efficacy.

Cannabidiol (CBD) is a constituent of the Cannabis plant, which has potential therapeutic properties for various indications. After the recent legalization of cannabis, CBD has drawn increased attention as a potential treatment, as the majority of existing data suggest it is safe, well tolerated, has few adverse effects, and demonstrates no potential for abuse or dependence in humans.

Pre-clinical research using animal models of innate fear and anxiety-like behaviors have found anxiolytic, antistress, anticompulsive, and panicolytic-like effects of CBD. Preliminary evidence from human trials using both healthy volunteers and individuals with social anxiety disorder, suggests that CBD may have anxiolytic effects.

Although these findings are promising, future research is warranted to determine the efficacy of CBD in other anxiety disorders, establish appropriate doses, and determine its long-term efficacy. The majority of pre-clinical and clinical research has been conducted using males only. Among individuals with anxiety disorders, the prevalence rates, symptomology, and treatment response differ between males and females. Thus, future research should focus on this area due to the lack of research in females and the knowledge gap on sex and gender differences in the effectiveness of CBD as a potential treatment for anxiety.”

https://pubmed.ncbi.nlm.nih.gov/32923656/

“Cannabidiol (CBD) is a constituent of the Cannabis plant, which has potential therapeutic properties across many neuropsychiatric disorders. Overall, existing pre-clinical and clinical evidence supports a possible role for CBD as a novel treatment for anxiety disorders.”

https://www.liebertpub.com/doi/10.1089/can.2019.0052

A single dose of cannabidiol modulates medial temporal and striatal function during fear processing in people at clinical high risk for psychosis

 Translational Psychiatry“Emotional dysregulation and anxiety are common in people at clinical high risk for psychosis (CHR) and are associated with altered neural responses to emotional stimuli in the striatum and medial temporal lobe.

Using a randomised, double-blind, parallel-group design, 33 CHR patients were randomised to a single oral dose of CBD (600 mg) or placebo. Healthy controls (n = 19) were studied under identical conditions but did not receive any drug. Participants were scanned with functional magnetic resonance imaging (fMRI) during a fearful face-processing paradigm. Activation related to the CHR state and to the effects of CBD was examined using a region-of-interest approach.

During fear processing, CHR participants receiving placebo (n = 15) showed greater activation than controls (n = 19) in the parahippocampal gyrus but less activation in the striatum. Within these regions, activation in the CHR group that received CBD (n = 15) was intermediate between that of the CHR placebo and control groups.

These findings suggest that in CHR patients, CBD modulates brain function in regions implicated in psychosis risk and emotion processing. These findings are similar to those previously evident using a memory paradigm, suggesting that the effects of CBD on medial temporal and striatal function may be task independent.”

https://pubmed.ncbi.nlm.nih.gov/32921794/

“This study is the first to demonstrate that a single dose of CBD modulates activation of the medial temporal cortex and striatum during fear processing in CHR patients. In showing that CBD modulates function of the neural circuitry directly implicated in psychosis onset, these results add to previous evidence that CBD may be a promising novel therapeutic for patients at CHR. Our results also support further investigation of the potential utility of CBD outside of the CHR field in other populations, such as in those with anxiety.”

https://www.nature.com/articles/s41398-020-0862-2

Cannabidiol-Mediated Changes to the Phospholipid Profile of UVB-Irradiated Keratinocytes from Psoriatic Patients

ijms-logo“UVB phototherapy is treatment for psoriasis, which increases phospholipid oxidative modifications in the cell membrane of the skin. Therefore, we carried out lipidomic analysis on the keratinocytes of healthy individuals and patients with psoriasis irradiated with UVB and treated with cannabidiol (CBD), phytocannabinoid with antioxidant and anti-inflammatory properties.

Our results showed that, in psoriatic keratinocytes phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), and ether-linked phosphoethanolamine (PEo), were downregulated, while SM (d41:2) was upregulated. These changes were accompanied by an increase in negative zeta potential, which indicates translocation of PS to the outer layer of the membrane.

CBD treatment of psoriatic keratinocytes led to downregulation of PC, PS, and upregulation of certain PEo and an SM species, SM (d42:2), and the zeta potential. However, UVB irradiation of psoriatic keratinocytes resulted in upregulation of PC, PC plasmalogens (PCp), PEo, and a decrease in the negative zeta potential. The exposure of UVB-irradiated cells to CBD led to a decrease in the level of SM (d42:2).

Our results suggest that CBD induces pro-apoptotic mechanisms in psoriatic keratinocytes while simultaneously improving the antioxidant properties and preventing the loss of transepidermal water of keratinocytes of patients irradiated with UVB. Thus, CBD has potential therapeutic value in the treatment of psoriasis.”

https://pubmed.ncbi.nlm.nih.gov/32916896/

https://www.mdpi.com/1422-0067/21/18/6592

Clinical implications of trials investigating drug-drug interactions between cannabidiol and enzyme inducers or inhibitors or common antiseizure drugs

“Highly purified cannabidiol (CBD) has demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut syndrome or Dravet syndrome in randomized, double-blind, add-on, controlled phase 3 trials.

It is important to consider the possibility of drug-drug interactions (DDIs). Here, we review six trials of CBD (Epidiolex/Epidyolex; 100 mg/mL oral solution) in healthy volunteers or patients with epilepsy, which investigated potential interactions between CBD and enzymes involved in drug metabolism of common antiseizure drugs (ASDs).

CBD did not affect CYP3A4 activity. Induction of CYP3A4 and CYP2C19 led to small reductions in exposure to CBD and its major metabolites. Inhibition of CYP3A4 activity did not affect CBD exposure and caused small increases in exposure to CBD metabolites. Inhibition of CYP2C19 activity led to a small increase in exposure to CBD and small decreases in exposure to CBD metabolites.

One potentially clinically important DDI was identified: combination of CBD and clobazam (CLB) did not affect CBD or CLB exposure, but increased exposure to major metabolites of both compounds. Reduction of CLB dose may be considered if adverse reactions known to occur with CLB are experienced when it is coadministered with CBD.

There was a small increase of exposure to stiripentol (STP) when coadministered with CBD. STP had no effect on CBD exposure but led to minor decreases in exposure to CBD metabolites. Combination of CBD and valproate (VPA) did not cause clinically important changes in the pharmacokinetics of either drug, or 2-propyl-4-pentenoic acid. Concomitant VPA caused small increases in exposure to CBD metabolites. Dose adjustments are not likely to be necessary when CBD is combined with STP or VPA.

The safety results from these trials were consistent with the known safety profile of CBD. These trials indicate an overall low potential for DDIs between CBD and other ASDs, except for CLB.”

https://pubmed.ncbi.nlm.nih.gov/32918835/

https://onlinelibrary.wiley.com/doi/full/10.1111/epi.16674