Targeting the Endocannabinoid System in Borderline Personality Disorder.

“Borderline Personality Disorder (BPD) is a chronic debilitating psychiatric disorder characterized mainly by emotional instability, chaotic interpersonal relationships, cognitive disturbance (e.g. dissociation and suicidal thoughts) and maladaptive behaviors. BPD has a high rate of comorbidity with other mental disorders and high burden on society.

In this review, we focus on two compromised brain regions in BPD – the hypothalamus and the corticolimbic system, emphasizing the involvement and potential contribution of the endocannabinoid system (ECS) to improvement in symptoms and coping.

The hypothalamus-regulated endocrine axes (hypothalamic pituitary – gonadal, thyroid & adrenal) have been found to be dysregulated in BPD. There is also substantial evidence for limbic system structural and functional changes in BPD, especially in amygdala and hippocampus, including cortical regions within the corticolimbic system.

Extensive expression of CB1 and CB2 receptors of the ECS has been found in limbic regions and the hypothalamus. This opens new windows of opportunity for treatment with cannabinoids such as cannabidiol (CBD) as no other pharmacological treatment has shown long-lasting improvement in the BPD population to date.

This review aims to show the potential role of the ECS in BPD patients through their most affected brain regions, the hypothalamus and the corticolimbic system. The literature reviewed does not allow for general indications of treatment with CBD in BPD. However, there is enough knowledge to indicate a treatment ratio of high level of CBD to low level of THC.

A randomized controlled trial investigating the efficacy of cannabinoid based treatments in BPD is warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/32351183

http://www.eurekaselect.com/181504/article

CBD modulates DNA methylation in mice prefrontal cortex and hippocampus of mice exposed to forced swim.

Behavioural Brain Research“Cannabidiol (CBD), a non-psychotomimetic component of Cannabis sativa plant, shows therapeutic potential in psychiatric disorders, including depression.

The molecular mechanisms underlying the antidepressant-like effects of CBD are not yet understood. Previous studies in differentiated skin cells demonstrated that CBD regulates DNA methylation, an overall repressive epigenetic mechanism. Both stress exposure and antidepressant treatment can modulate DNA methylation in the brain, and lead to gene expression changes associated with depression neurobiology.

We investigated herein if the antidepressant effect of CBD could be associated with changes in DNA methylation in the prefrontal cortex (PFC) and hippocampus (HPC) of mice submitted to the forced swimming test (FST).

Altogether, our results indicate that CBD regulates DNA methylation in brain regions relevant for depression neurobiology, suggesting that this mechanism could be related to CBD-induced antidepressant effects.”

https://www.ncbi.nlm.nih.gov/pubmed/32348868

“Cannabidiol (CBD) shows antidepressant-like properties in mice.”

https://www.sciencedirect.com/science/article/pii/S0166432820303260?via%3Dihub

A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain.

PAIN Impact Factor Increase to 6.029 - IASP“Over the last two decades, affirmative diagnoses of osteoarthritis in the United States have tripled due to increasing rates of obesity and an aging population.

Hemp-derived cannabidiol (CBD) is the major non-THC component of cannabis and has been promoted as a potential treatment for a wide variety of disparate inflammatory conditions.

Here we evaluated CBD for its ability to modulate the production of pro-inflammatory cytokines in vitro and in murine models of induced inflammation and further validated the ability of a liposomal formulation to increase bioavailability in mice and in humans.

Subsequently, the therapeutic potential of both naked and liposomally-encapsulated CBD was explored in a 4-week, randomized placebo-controlled, double-blinded study in a spontaneous canine model of osteoarthritis.

In vitro and in mouse models, CBD significantly attenuated the production of pro-inflammatory cytokines IL-6 and TNF-α while elevating levels of anti-inflammatory IL-10. In the veterinary study, CBD significantly decreased pain and increased mobility in a dose-dependent fashion among animals with an affirmative diagnosis of osteoarthritis.

Liposomal CBD (20 mg/day) was as effective as the highest dose of non-liposomal CBD (50 mg/day) in improving clinical outcomes. Hematocrit, comprehensive metabolic profile, and clinical chemistry indicated no significant detrimental impact of CBD administration over the four-week analysis period.

This study supports the safety and therapeutic potential of hemp-derived CBD for relieving arthritic pain and suggests follow-up investigations in humans is warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/32345916

https://journals.lww.com/pain/Abstract/9000/A_randomized,_double_blind,_placebo_controlled.98420.aspx

Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer.

cancers-logo“Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion.

Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively.

An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking.

In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis.

Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32340151

https://www.mdpi.com/2072-6694/12/4/1033

Effects of THC/CBD oromucosal spray on spasticity-related symptoms in people with multiple sclerosis: results from a retrospective multicenter study.

 Journal cover“The approval of 9-δ-tetrahydocannabinol (THC)+cannabidiol (CBD) oromucosal spray (Sativex®) in Italy as an add-on medication for the management of moderate to severe spasticity in multiple sclerosis (MS) has provided a new opportunity for MS patients with drug-resistant spasticity.

We aimed to investigate the improvement of MS spasticity-related symptoms in a large cohort of patients with moderate to severe spasticity in daily clinical practice.

CONCLUSION:

Our study confirmed that the therapeutic benefit of cannabinoids may extend beyond spasticity, improving spasticity-related symptoms even in non-NRS responder patients.”

https://www.ncbi.nlm.nih.gov/pubmed/32335779

https://link.springer.com/article/10.1007%2Fs10072-020-04413-6

Cannabis and Canabidinoids on the Inflammatory Bowel Diseases: Going Beyond Misuse.

ijms-logo“Inflammatory bowel diseases (IBD) are characterized by a chronic and recurrent gastrointestinal condition, including mainly ulcerative colitis (UC) and Crohn’s disease (CD). Cannabis sativa (CS) is widely used for medicinal, recreational, and religious purposes. The most studied compound of CS is tetrahydrocannabinol (THC) and cannabidiol (CBD). Besides many relevant therapeutic roles such as anti-inflammatory and antioxidant properties, there is still much controversy about the consumption of this plant since the misuse can lead to serious health problems. Because of these reasons, the aim of this review is to investigate the effects of CS on the treatment of UC and CD. The literature search was performed in PubMed/Medline, PMC, EMBASE, and Cochrane databases. The use of CS leads to the improvement of UC and CD scores and quality of life. The medical use of CS is on the rise. Although the literature shows relevant antioxidant and anti-inflammatory effects that could improve UC and CD scores, it is still not possible to establish a treatment criterion since the studies have no standardization regarding the variety and part of the plant that is used, route of administration and doses. Therefore, we suggest caution in the use of CS in the therapeutic approach of IBD until clinical trials with standardization and a relevant number of patients are performed.”

https://www.ncbi.nlm.nih.gov/pubmed/32331305

https://www.mdpi.com/1422-0067/21/8/2940

Simultaneous determination of terpenes and cannabidiol in hemp (Cannabis sativa L.) by fast Gas Chromatography with Flame Ionization Detection.

Journal of Separation Science“Hemp (Cannabis sativa L.) has become widely used in several sectors due to the presence of various bioactive compounds such as terpenes and cannabidiol. In general, terpenes and cannabidiol content is determined separately which is time-consuming. Thus, a fast Gas Chromatography with Flame Ionization Detection method was validated for simultaneous determination of both terpenes and cannabidiol in hemp. The method enabled a rapid detection of 29 different terpenes and cannabidiol within a total analysis time of 16 min, with satisfactory sensitivity (LOD = 0.03 – 0.27 μg/mL, LOQ = 0.10 – 0.89 μg/mL). The interday and intraday precision (RSD) was <7.82 % and <3.59 %, respectively. Recoveries at two spiked concentration levels (low, 3.15 μg/mL; high, 20.0 μg/mL) were determined on both apical leaves (78.55 – 101.52 %) and inflorescences (77.52 – 107.10 %). The reproducibility (RSD) was <5.94 % and <5.51 % in apical leaves and inflorescences, respectively. The proposed and validated method is highly sensitive, robust, fast, and accurate for determination of the main terpenes and cannabidiol in hemp and could be routinely used for quality control.”

https://www.ncbi.nlm.nih.gov/pubmed/32329135

https://onlinelibrary.wiley.com/doi/abs/10.1002/jssc.201900822

Endocannabinoids and Stroke Prevention: Review of Clinical Studies.

View details for Cannabis and Cannabinoid Research cover image“The societal burden of ischemic stroke suggests a need for additional therapeutic categories in stroke prevention.

Modulation of the endocannabinoid system (ECS) is a rational target for stroke prevention because of its effects on inflammation, vascular tone, and metabolic balance, all well-described stroke risk factors.

In this article, we summarize the existing ECS clinical studies in human subjects’ research as they relate to conventional vascular risk factors associated with ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/32322672

https://www.liebertpub.com/doi/10.1089/can.2018.0066

“The endocannabinoid system and stroke: A focused review. This review seeks to summarize the recent evidence for the role of the endocannabinoid signaling system in stroke pathophysiology, as well as the evidence from preclinical studies regarding the efficacy of cannabinoids as neuroprotective therapies in the treatment of stroke.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458776/

A preliminary study of the effects of cannabidiol (CBD) on brain structure in patients with epilepsy.

Epilepsy & Behavior Reports“This preliminary study examines whether daily CBD dose of 15-25 mg/kg produces cerebral macrostructure changes and, if present, how they relate to changes in seizure frequency.

In conclusion, short-term exposure to highly purified CBD may not affect cortical macrostructure.”

https://www.ncbi.nlm.nih.gov/pubmed/32322816

“We document no effect of CBD on gray matter volume and cortical thickness.”

https://www.sciencedirect.com/science/article/pii/S258998641930111X?via%3Dihub

Oral Cannabidiol Does Not Convert to Δ8-THC or Δ9-THC in Humans: A Pharmacokinetic Study in Healthy Subjects.

View details for Cannabis and Cannabinoid Research cover image“Recent studies have suggested that cannabidiol (CBD) could interconvert into Delta-8- and Delta-9- tetrahydrocannabinol. Thus, we tested the plasma samples of 120 healthy human subjects (60 male and 60 female), 60 in fasting and the other 60 under normal feeding conditions after acute administration of an oral solution containing CBD 300 mg.

The results showed that THC was not detected in plasma after the administration of CBD, and those study participants did not present psychotomimetic effects.

The findings presented here are consistent with previous evidence suggesting that the oral administration of CBD in a corn oil formulation is a safe route for the administration of the active substance without bioconversion to THC in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/32322680

https://www.liebertpub.com/doi/10.1089/can.2019.0024