Δ9-Tetrahydrocannabinol (THC) Impairs CD8+ T Cell-Mediated Activation of Astrocytes.

“CD8+ T cells can contribute to neuroinflammation by secretion of inflammatory cytokines like interferon γ (IFNγ) and tumor necrosis factor α (TNFα). Astrocytes, a glial cell in the brain, can be stimulated by IFNγ and TNFα to secrete the inflammatory cytokines, monocyte chemotactic protein 1 (MCP-1), interleukin 6 (IL-6), and interferon-γ inducible protein 10 (IP-10).

Δ9-Tetrahydrocannabinol (THC), the primary psychoactive cannabinoid in Cannabis sativa, possesses potent anti-inflammatory activity.

The objective of this investigation was to assess the effects of THC treatment on CD8+ T cell-mediated activation of astrocytes.

The results suggest that cannabinoid treatment can selectively reduce certain CD8+ T cell responses that contribute to stimulation of astrocytes. Treatment with THC can abate CD8+ T cell-dependent neuroinflammatory processes by inhibiting CD8+ cell differentiation into effector cells, suppressing CD8+ effector cell function, and reducing activation of astrocytes by CD8+ T cell-derived inflammatory cytokines.”

https://www.ncbi.nlm.nih.gov/pubmed/32215844

https://link.springer.com/article/10.1007%2Fs11481-020-09912-z

Cannabinoids Rescue Cocaine-Induced Seizures by Restoring Brain Glycine Receptor Dysfunction.

Cover image volume 30, Issue 12“Cannabinoids are reported to rescue cocaine-induced seizures (CISs), a severe complication in cocaine users. However, the molecular targets for cannabinoid therapy of CISs remain unclear.

Here, we report that the systemic administration of cannabinoids alleviates CISs in a CB1/CB2-receptor-independent manner.

These findings suggest that using GlyR-hypersensitive cannabinoids may represent a potential therapeutic strategy for treating CISs.”

https://www.ncbi.nlm.nih.gov/pubmed/32209479

“Cannabinoids alleviate cocaine-induced seizures (CISs) by glycine receptors (GlyRs).”

https://www.cell.com/cell-reports/fulltext/S2211-1247(20)30287-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124720302874%3Fshowall%3Dtrue

Cannabinoid receptor 2 agonist promotes parameters implicated in mucosal healing in patients with inflammatory bowel disease.

Issues“Cannabis benefits patients with inflammatory bowel disease (IBD).

Cannabinoid receptors are expressed in gut immune cells and in epithelial cells of inflamed guts.

Mucosal healing (MH) requires epithelial layer restoration.

CONCLUSION:

Using ex vivo and in vitro human models, we demonstrated that manipulating the cannabinoid system affects colon cells and secretome characteristics that facilitate MH in IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/32213014

“Experimental studies and recent clinical trials suggest that treatment with cannabis benefits patients with IBD.”

https://journals.sagepub.com/doi/10.1177/2050640619889773

From Cannabis sativa to Cannabidiol: Promising Therapeutic Candidate for the Treatment of Neurodegenerative Diseases.

frontiers in pharmacology – Retraction Watch“Cannabis sativa, commonly known as marijuana, contains a pool of secondary plant metabolites with therapeutic effects.

Besides Δ9-tetrahydrocannabinol that is the principal psychoactive constituent of Cannabiscannabidiol (CBD) is the most abundant nonpsychoactive phytocannabinoid and may represent a prototype for anti-inflammatory drug development for human pathologies where both the inflammation and oxidative stress (OS) play an important role to their etiology and progression.

To this regard, Alzheimer’s disease (AD), Parkinson’s disease (PD), the most common neurodegenerative disorders, are characterized by extensive oxidative damage to different biological substrates that can cause cell death by different pathways. Most cases of neurodegenerative diseases have a complex etiology with a variety of factors contributing to the progression of the neurodegenerative processes; therefore, promising treatment strategies should simultaneously target multiple substrates in order to stop and/or slow down the neurodegeneration.

In this context, CBD, which interacts with the eCB system, but has also cannabinoid receptor-independent mechanism, might be a good candidate as a prototype for anti-oxidant drug development for the major neurodegenerative disorders, such as PD and AD. This review summarizes the multiple molecular pathways that underlie the positive effects of CBD, which may have a considerable impact on the progression of the major neurodegenerative disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/32210795

“The present review provided evidence that the nonpsychoactive phytocannabinoids CBD could be a potential pharmacological tool for the treatment of neurodegenerative disorders; its excellent safety and tolerability profile in clinical studies renders it a promising therapeutic agent.

The molecular mechanisms associated with CBD’s improvement in PD and AD are likely multifaceted, and although CBD may act on different molecular targets all the beneficial effects are in some extent linked to its antioxidant and anti-inflammatory profile, as observed in in vitro and in vivo studies. Therefore, this review describes evidence to prove the therapeutical efficacy of CBD in patients affected by neurodegenerative disorders and promotes further research in order to better elucidate the molecular pathways involved in the therapeutic potential of CBD.”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00124/full

The Atypical Cannabinoid Abn-CBD Reduces Inflammation and Protects Liver, Pancreas, and Adipose Tissue in a Mouse Model of Prediabetes and Non-alcoholic Fatty Liver Disease.

Archive of "Frontiers in Endocrinology".“The synthetic atypical cannabinoid Abn-CBD, a cannabidiol (CBD) derivative, has been recently shown to modulate the immune system in different organs, but its impact in obesity-related meta-inflammation remains unstudied.

We investigated the effects of Abn-CBD on metabolic and inflammatory parameters utilizing a diet-induced obese (DIO) mouse model of prediabetes and non-alcoholic fatty liver disease (NAFLD).

Conclusions: These results suggest that Abn-CBD exerts beneficial immunomodulatory actions in the liver, pancreas and adipose tissue of DIO prediabetic mice with NAFLD, thus protecting tissues. Therefore, Abn-CBD and related compounds could represent novel pharmacological strategies for managing obesity-related metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/32210914

“In summary, we herein provide evidence that the atypical cannabinoid Abn-CBD is able to induce beneficial metabolic and anti-inflammatory actions at both systemic and tissue level in a mouse model of diet-induced prediabetes and NAFLD.”

https://www.frontiersin.org/articles/10.3389/fendo.2020.00103/full

Cannabidiol alleviates hemorrhagic shock-induced neural apoptosis in rats by inducing autophagy through activation of the PI3K/AKT pathway.

Publication cover image“Recently, several studies have reported that the pharmacological effects exerted by cannabidiol (CBD) are partially related to the regulation of autophagy. Increasing evidence indicates that autophagy provides protection against ischemia-induced brain injury. However, the protective effect of CBD against mitochondrial-dependent apoptosis in hemorrhagic shock (HS)-induced brain injury has not been studied.

In the present study, we observed the protective effects of CBD against neural mitochondrial-dependent apoptosis in a rat model of HS. In addition, CBD increased Beclin-1 and LC3II expression and reduced P62 expression, which were indicative of autophagy. CBD treatment attenuated the neural apoptosis induced by HS, as reflected by restoring mitochondrial dysfunction, downregulation of BAX, neuro-apoptosis ratio and NF-κB signaling activation, and upregulation of BCL2 in the cerebral cortex.

Such protective effects were reversed by 3-Methyladenine, a specific autophagy inhibitor, indicating that the protective effects of CBD treatment involved autophagy. LY294002, a PI3K inhibitor, significantly inhibited CBD-induced autophagy, demonstrating that PI3K/AKT signaling is involved in the CBD’s regulation of autophagy. Furthermore, we found that CBD treatment upregulated PI3K/AKT signaling via cannabinoid receptor 1.

Therefore, these findings suggested that CBD treatment protects against cerebral injury induced by HS-mediated mitochondrial-dependent apoptosis by activating the PI3K/AKT signaling pathway to reinforce autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/32215966

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12557

“Hemorrhagic shock occurs when the body begins to shut down due to large amounts of blood loss.” https://www.healthline.com/health/hemorrhagic-shock

Cannabidiol in sport : ergogenic or else?

Pharmacological Research“In the sports domain, cannabis is prohibited by the World Anti-Doping Agency (WADA) across all sports in competition since 2004. The few studies on physical exercise and cannabis focused on the main compound i.e. Δ9-tetrahydrocannabinol. Cannabidiol (CBD) is another well-known phytocannabinoid present in dried or heated preparations of cannabis. Unlike Δ9-tetrahydrocannabinol, CBD is non-intoxicating but exhibits pharmacological properties that are interesting for medical use.

The worldwide regulatory status of CBD is complex and this compound is still a controlled substance in many countries. Interestingly, however, the World Anti-Doping Agency removed CBD from the list of prohibited substances – in or out of competition – since 2018. This recent decision by the WADA leaves the door open for CBD use by athletes.

In the present opinion article we wish to expose the different CBD properties discovered in preclinical studies that could be further tested in the sport domain to ascertain its utility. Preclinical studies suggest that CBD could be useful to athletes due to its anti-inflammatory, analgesic, anxiolytic, neuroprotective properties and its influence on the sleep-wake cycle. Unfortunately, almost no clinical data are available on CBD in the context of exercise, which makes its use in this context still premature.”

https://www.ncbi.nlm.nih.gov/pubmed/32205233

“Athletes could benefit from CBD to manage pain, inflammation and the swelling processes associated with injury. CBD could be useful to manage anxiety, fear memory process, sleep and sleepiness in athletes. CBD could be interesting for the management of mild traumatic brain injury and chronic traumatic encephalopathy.”

https://www.sciencedirect.com/science/article/abs/pii/S1043661819326143?via%3Dihub

The molecular mechanisms that underpin the biological benefit of full spectrum cannabis extract in the treatment of neuropathic pain and inflammation.

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease“Cannabis has been shown to be beneficial in the treatment of pain and inflammatory diseases.

The biological effect of cannabis is mainly attributed to two major cannabinoids, tetrahydrocannabinol and cannabidiol. In the majority of studies to-date, a purified tetrahydrocannabinol and cannabidiol alone or in combination have been extensively examined in many studies for the treatment of numerous disorders including pain and inflammation. However, few studies have investigated the biological benefits of full-spectrum cannabis plant extract.

Given that cannabis is known to generate a large number of cannabinoids along with numerous other biologically relevant products including terpenes, studies involving purified tetrahydrocannabinol and/or cannabidiol may not precisely consider the potential biological benefits of the full-spectrum cannabis extracts. This may be especially true in the role of cannabis as a treatment of pain and inflammation. Herein, we review the pre-clinical physiological and molecular mechanisms in biological systems that are affected by cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/32201189

“Full-spectrum cannabis extract demonstrates several convincing beneficial anti-inflammatory and analgesic effects in preclinical studies. Full-spectrum cannabis extract may represent a promising therapeutic agent that seems to benefit a variety of conditions associated with pain and inflammation.”

https://www.sciencedirect.com/science/article/abs/pii/S0925443920301162?via%3Dihub

The endocannabinoid system modulates the ovarian physiology and its activation can improve in vitro oocyte maturation.

Publication cover image“The present study investigated the effect of the lack of CB1 and CB2 receptors in mice ovarian morphology, folliculogenesis, oocyte retrieval, and oocyte maturation and evaluated the use of Δ9-tetrahydrocannabinol (THC) on oocyte in vitro maturation (IVM) by comparing classical IVM and two-step IVM by analyzing the meiotic competence of the oocytes and their evolution toward embryos.

Thus, when CB1 and CB2 receptors were missed, the ovary area and volume was significantly less and the action of the equine chorionic gonadotropin (eCG) hormone was diminished.

In addition, the mutant genotypes had fewer ovarian follicles and they were less competent after eCG administration compared with wild-type mice, and this lack of CB receptors showed a mismatch of oocyte maturation.

However, the in vitro use of THC showed improvements in oocytes IVM after a Pre-IVM step for 48 hr, as those oocytes reached a significantly higher polar body rate, a larger diameter and the best result on blastocysts rate was achieved when THC was used during the IVM step.”

https://www.ncbi.nlm.nih.gov/pubmed/32198753

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.29663

“Tetrahydrocannabinol Modulates in Vitro Maturation of Oocytes and Improves the Blastocyst Rates after in Vitro Fertilization. Our data suggest that THC may be useful IVM supplements in clinic as is more feasible and reliable than any synthetic cannabinoid.” https://www.ncbi.nlm.nih.gov/pubmed/31436397

Phytocannabinoids: Useful Drugs for the Treatment of Obesity? Special Focus on Cannabidiol.

Image result for frontiers in endocrinology

“Currently, an increasing number of diseases related to insulin resistance and obesity is an alarming problem worldwide. It is well-known that the above states can lead to the development of type 2 diabetes, hypertension, and cardiovascular diseases. An excessive amount of triacylglycerols (TAGs) in a diet also evokes adipocyte hyperplasia and subsequent accumulation of lipids in peripheral organs (liver, cardiac muscle). Therefore, new therapeutic methods are constantly sought for the prevention, treatment and alleviation of symptoms of the above mentioned diseases.

Currently, much attention is paid to Cannabis derivatives-phytocannabinoids, which interact with the endocannabinoid system (ECS) constituents. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant compounds of Cannabis plants and their therapeutic application has been suggested. CBD is considered as a potential therapeutic agent due to its anti-inflammatory, anti-oxidant, anti-tumor, neuroprotective, and potential anti-obesity properties. Therefore, in this review, we especially highlight pharmacological properties of CBD as well as its impact on obesity in different tissues.”

https://www.ncbi.nlm.nih.gov/pubmed/32194509

“A well-known ancient plant Cannabis sativa has been a subject of scientific interest for over 50 years. Moreover, it has been used for recreational and medical purposes for thousands of years. The plant comprises about 100 phytocannabinoids, which are C21 terpenophenolic constituents. Nowadays, the most-studied phytocannabinoids are: Δ9– tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabivarin (Δ9-THCV), cannabinol (CBN), cannabidiol (CBD), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC). So far, many studies have shown therapeutic properties of the above mentioned Cannabis compounds. Therefore, the aim of the current review is to focus on the emerging potential of CBD and other phytocannabinoids, which act as novel therapeutic agents in obesity treatment. From the existing data, we can conclude that CBD has the promising potential as a therapeutic agent and might be effective in alleviating the symptoms of insulin resistance, type 2 diabetes and metabolic syndrome.”

https://www.frontiersin.org/articles/10.3389/fendo.2020.00114/full