Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes.

Scientific Reports “Cannabis research has historically focused on the most prevalent cannabinoids. However, extracts with a broad spectrum of secondary metabolites may have increased efficacy and decreased adverse effects compared to cannabinoids in isolation.

Cannabis’s complexity contributes to the length and breadth of its historical usage, including the individual application of the leaves, stem barks, and roots, for which modern research has not fully developed its therapeutic potential. This study is the first attempt to profile secondary metabolites groups in individual plant parts comprehensively.

We profiled 14 cannabinoids, 47 terpenoids (29 monoterpenoids, 15 sesquiterpenoids, and 3 triterpenoids), 3 sterols, and 7 flavonoids in cannabis flowers, leaves, stem barks, and roots in three chemovars available. Cannabis inflorescence was characterized by cannabinoids (15.77-20.37%), terpenoids (1.28-2.14%), and flavonoids (0.07-0.14%); the leaf by cannabinoids (1.10-2.10%), terpenoids (0.13-0.28%), and flavonoids (0.34-0.44%); stem barks by sterols (0.07-0.08%) and triterpenoids (0.05-0.15%); roots by sterols (0.06-0.09%) and triterpenoids (0.13-0.24%).

This comprehensive profile of bioactive compounds can form a baseline of reference values useful for research and clinical studies to understand the “entourage effect” of cannabis as a whole, and also to rediscover therapeutic potential for each part of cannabis from their traditional use by applying modern scientific methodologies.”

https://www.ncbi.nlm.nih.gov/pubmed/32094454

https://www.nature.com/articles/s41598-020-60172-6

Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain.

ijms-logo“Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research.

Cannabinoid-based therapeutic strategies have emerged as promising new options.

Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent.

Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects.

Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.”

https://www.ncbi.nlm.nih.gov/pubmed/32093166

https://www.mdpi.com/1422-0067/21/4/1423

Anti-inflammatory Potential of Terpenes Present in Cannabis sativa L.

Go to Volume 0, Issue 0 “Cannabis sativa L. (C. sativa) contains an array of plant-derived (phyto) cannabinoids and terpenes that are predominantly located in the trichome cavity of the plant. Terpenes, aromatic organic hydrocarbons characterized for their role in plant protection/pollination, are gaining attention for their potential as novel therapeutics in many areas of biomedicine. This Viewpoint will explore the exciting recent evidence that terpenes have anti-inflammatory/antioxidant propensity by targeting inflammatory signaling mechanisms relevant to human disease. Given their anti-inflammatory properties, terpenes may contribute to the effects of current cannabinoid-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/32091871

https://pubs.acs.org/doi/10.1021/acschemneuro.0c00075

Cannabinoid agonists possibly mediate interaction between cholinergic and cannabinoid systems in regulating intestinal inflammation.

Medical Hypotheses“Inflammatory Bowel Disease (IBD) is idiopathic, chronic and affects the gastrointestinal tract. It results from the association of genetic, environmental and immune deregulation, which culminates in the development and progression of the inflammatory process. In an attempt to reverse colonic inflammation, endogenous systems involved in intestinal physiology are studied and the cholinergic system is fundamental for this process. In addition, this system has anti-inflammatory action in experimental models of IBD. Another important endogenous system in regulating the exacerbated inflammatory response in the gut is mediated by endocannabinoids, which play an important role in restoring bowel functionality after the onset of the inflammatory process. There are several reports in the literature showing the interconnection between the cannabinoid and cholinergic systems in different tissues. Considering that the activation of the cholinergic system stimulates the production of cannabinoid agonists in the intestine, our hypothesis is that the interaction between the muscarinic system and the cannabinoid in the control of intestinal inflammation is mediated by endogenous cannabinoids, since they are stimulated by the activation of muscarinic receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/32085982

https://www.sciencedirect.com/science/article/abs/pii/S030698771931429X?via%3Dihub

“Recent advances in the understanding of the aetiology and therapeutic strategies in burning mouth syndrome: focus on the actions of cannabinoids”.

European Journal of Neuroscience“Burning mouth syndrome (BMS) is a neuropathic pain disorder associated with a burning sensation on oral mucosal surfaces with frequently reported xerostomia, dysgeusia and tingling or paraesthetic sensations. However, patients present no clinically evident causative lesions. The poor classification of the disorder has resulted in a diagnostic challenge, particularly for the clinician/dentist evaluating these individuals. Major research developments have been made in the BMS field in recent years to address this concern, principally in terms of the pathophysiological mechanisms underlying the disorder, in addition to therapeutic advancements. For the purpose of this review, an update on the pathophysiological mechanisms will be discussed from a neuropathic, immunological, hormonal and psychological perspective. This review will also focus on the many therapeutic strategies that have been explored for BMS, including antidepressants/antipsychotics, nonsteroidal anti-inflammatories, hormone replacement therapies, phytotherapeutic compounds and non-pharmacological interventions, overall highlighting the lack of controlled clinical studies to support the effectiveness of such therapeutic avenues. Particular focus is given to the cannabinoid system, and the potential of cannabis-based therapeutics in managing BMS patients.”

https://www.ncbi.nlm.nih.gov/pubmed/32091630

https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14712

Cannabis and the exocannabinoid and endocannabinoid systems. Their use and controversies.

“Cannabis (marijuana) is one of the most consumed psychoactive substances in the world. The term marijuana is of Mexican origin. The primary cannabinoids that have been studied to date include cannabidiol and delta-9-tetrahydrocannabinol, which is responsible for most cannabis physical and psychotropic effects. Recently, the endocannabinoid system was discovered, which is made up of receptors, ligands and enzymes that are widely expressed in the brain and its periphery, where they act to maintain balance in several homeostatic processes. Exogenous cannabinoids or naturally-occurring phytocannabinoids interact with the endocannabinoid system. Marijuana must be processed in a laboratory to extract tetrahydrocannabinol and leave cannabidiol, which is the product that can be marketed. Some studies suggest cannabidiol has great potential for therapeutic use as an agent with antiepileptic, analgesic, anxiolytic, antipsychotic, anti-inflammatory and neuroprotective properties; however, the findings on cannabinoids efficacy and cannabis-based medications tolerability-safety for some conditions are inconsistent. More scientific evidence is required in order to generate recommendations on the use of medicinal cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/32091020

http://gacetamedicademexico.com/frame_eng.php?id=348

Decreased sensitivity in adolescent versus adult rats to the antidepressant-like effects of cannabidiol.

SpringerLink“Cannabidiol is a non-psychoactive phytocannabinoid with great therapeutic potential in diverse psychiatric disorders; however, its antidepressant potential has been mainly ascertained in adult rats.

OBJECTIVES:

To compare the antidepressant-like response induced by cannabidiol in adolescent and adult rats and the possible parallel modulation of hippocampal neurogenesis.

RESULTS:

Cannabidiol induced differential effects depending on the age and dose administered, with a decreased sensitivity observed in adolescent rats: (1) cannabidiol (30 mg/kg) decreased body weight only in adult rats; (2) cannabidiol ameliorated behavioral despair in adolescent and adult rats, but with a different dose sensitivity (10 vs. 30 mg/kg), and with a different extent (2 vs. 21 days post-treatment); (3) cannabidiol did not modulate anxiety-like behavior at any dose tested in adolescent or adult rats; and (4) cannabidiol increased sucrose intake in adult rats.

CONCLUSIONS:

Our findings support the notion that cannabidiol exerts antidepressant- and anorexigenic-like effects in adult rats and demonstrate a decreased potential when administered in adolescent rats. Moreover, since cannabidiol did not modulate hippocampal neurogenesis (cell proliferation and early neuronal survival) in adolescent or adult rats, the results revealed potential antidepressant-like effects induced by cannabidiol without the need of regulating hippocampal neurogenesis.”

https://www.ncbi.nlm.nih.gov/pubmed/32086540

https://link.springer.com/article/10.1007%2Fs00213-020-05481-4

Quality of Life, Mental Health, Personality and Patterns of Use in Self-Medicated Cannabis Users with Chronic Diseases: A 12-Month Longitudinal Study.

Phytotherapy Research“The number of patients using cannabis for therapeutic purposes is growing worldwide. While research regarding the treatment of certain diseases/disorders with cannabis and cannabinoids is also expanding, only a few longitudinal studies have assessed the mid-term impacts of medical cannabis use on psychological variables and quality of life (QoL).

The aim of the study was to assess the psychological safety and QoL of patients with chronic diseases who self-medicate with cannabis over time.

We recruited patients with various chronic diseases who use cannabis and collected data regarding patterns of cannabis use as well as mental health, personality and QoL. Participants were followed-up at baseline, 4, 8 and 12 months. Hair analysis was conducted to confirm the presence of cannabinoids. Personality assessment showed a consistent decrease in self-transcendence and self-directedness scores.

Neither cognitive nor psychopathological deterioration was found. There were also no variations in QoL. Mid-term use of medical cannabis seems to show adequate tolerability regarding cognitive and psychopathological abilities, and it may help patients with chronic diseases to maintain an acceptable QoL.”

https://www.ncbi.nlm.nih.gov/pubmed/32083789

https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6639

Cannabinoid-mediated Modulation of Oxidative Stress and Early Inflammatory Response after Hypoxia-Ischemia.

ijms-logo“In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition.

The endocannabinoid system (ECS), recently recognized as a widespread neuromodulatory system, plays an important role in the development of the central nervous system (CNS).

This study aims to evaluate the potential effect of the cannabinoid (CB) agonist WIN 55,212-2 (WIN) on reactive oxygen species (ROS) and early inflammatory cytokine production after hypoxia-ischemia (HI) in fetal lambs.

Hypoxic-ischemic animals were subjected to 60 min of HI by partial occlusion of the umbilical cord. A group of lambs received a single dose of 0.01 μg/kg WIN, whereas non-asphyctic animals served as controls. WIN reduced the widespread and notorious increase in inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6 induced by HI, a modulatory effect not observed for oxidative stress.

Our study suggests that treatment with a low dose of WIN can alter the profile of pro-inflammatory cytokines 3 h after HI.”

https://www.ncbi.nlm.nih.gov/pubmed/32074976

https://www.mdpi.com/1422-0067/21/4/1283

“Cannabinoid as a neuroprotective strategy in perinatal hypoxic-ischemic injury.”   https://www.ncbi.nlm.nih.gov/pubmed/21788999

Cannabidiol protects against high glucose-induced oxidative stress and cytotoxicity in cardiac voltage-gated sodium channels.

Publication cover image“Cardiovascular complications are the major cause of mortality in diabetic patients. However, the molecular mechanisms underlying diabetes-associated arrhythmias are unclear.

We hypothesized that high glucose, could adversely affect Nav1.5, the major cardiac sodium channel isoform of the heart, at least partially via oxidative stress.

We further hypothesized that cannabidiol (CBD), one of the main constituents of Cannabis sativa, through its effects on Nav1.5, could protect against high glucose elicited oxidative stress and cytotoxicity.

KEY RESULTS:

High glucose evoked cell death associated with elevation in reactive oxygen species, right shifted the voltage dependence of conductance and steady state fast inactivation and increased persistent current leading to computational prolongation of action potential (hyperexcitability) which could result in long QT3 arrhythmia. CBD mitigated all the deleterious effects provoked by high glucose. Perfusion with Lidocaine (a well-known sodium channels inhibitor with anti-oxidant effects), or co-incubation of Tempol (a well-known anti-oxidant) elicited protection, comparable to CBD, against the deleterious effects of high glucose.

CONCLUSIONS AND IMPLICATIONS:

These findings suggest that, through its favourable anti-oxidant and sodium channel inhibitory effects, CBD may protect against high-glucose induced arrhythmia and cytotoxicity.”

https://www.ncbi.nlm.nih.gov/pubmed/32077098

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.15020