Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy.

medicina-logo“Cannabis has been used in pain management since 2900 BC.

In the 20th century, synthetic cannabinoids began to emerge, thus opening the way for improved efficacy. The search for new forms of synthetic cannabinoids continues and, as such, the aim of this review is to provide a comprehensive tool for the research and development of this promising class of drugs.

Methods for the in vitro assessment of cytotoxic, mutagenic or developmental effects are presented, followed by the main in vivo pain models used in cannabis research and the results yielded by different types of administration (systemic versus intrathecal versus inhalation). Animal models designed for assessing side-effects and long-term uses are also discussed.

In the second part of this review, pharmacokinetic and pharmacodynamic studies of synthetic cannabinoid biodistribution, together with liquid chromatography-mass spectrometric identification of synthetic cannabinoids in biological fluids from rodents to humans are presented. Last, but not least, different strategies for improving the solubility and physicochemical stability of synthetic cannabinoids and their potential impact on pain management are discussed.

In conclusion, synthetic cannabinoids are one of the most promising classes of drugs in pain medicine, and preclinical research should focus on identifying new and improved alternatives for a better clinical and preclinical outcome.”

https://www.ncbi.nlm.nih.gov/pubmed/31936616

https://www.mdpi.com/1010-660X/56/1/24

Cannabidiol (CBD) for Treatment of Neurofibromatosis-related Pain and Concomitant Mood Disorder: A Case Report.

Image result for cureus journal“Neurofibromatosis type 1 (NF1) is a common genetic disorder. Pain is a major symptom of this disease which can be secondary to the development of plexiform and subcutaneous neurofibromas, musculoskeletal symptoms (such as scoliosis and pseudoarthrosis), and headaches. Visible neurofibromas add significant psychosocial distress for NF1 patients. Along with the chronic pain, psychosocial distress contributes to associated mood disorders, such as depression and anxiety.

Cannabis has been the focus of many studies for treating multiple conditions, including epilepsy, multiple sclerosis, Parkinsonism disease, and many chronic pain conditions. Cannabidiol (CBD) is the major non-psychotropic component of cannabis. CBD has shown anti-inflammatory and analgesic properties, as well as having mood stabilizer and anxiolytic effects.

In this report, we present the use of cannabidiol (CBD) for the management of chronic pain and concomitant mood disorder in an NF1 patient.”

https://www.ncbi.nlm.nih.gov/pubmed/31938604

https://www.cureus.com/articles/23602-cannabidiol-cbd-for-treatment-of-neurofibromatosis-related-pain-and-concomitant-mood-disorder-a-case-report

Nightmares and the Cannabinoids.

“The cannabinoids, δ9 tetrahydrocannabinol and its analogue, nabilone, have been found to reliably attenuate the intensity and frequency of post-traumatic nightmares.

This essay examines how a traumatic event is captured in the mind after just a single exposure and repeatedly replicated during the nights that follow.

The adaptive neurophysiological, endocrine and inflammatory changes that are triggered by the trauma and that alter personality and behavior are surveyed. These adaptive changes, once established, can be difficult to reverse. But cannabinoids, uniquely, have been shown to interfere with all of these post-traumatic somatic adaptations.

While cannabinoids can suppress nightmares and other symptoms of the post-traumatic stress disorder, they are not a cure. There may be no cure.

The cannabinoids may best be employed, alone, but more likely in conjunction with other agents, in the immediate aftermath of a trauma to mitigate or even abort the metabolic changes which are set in motion by the trauma and which may permanently alter the reactivity of the nervous system. Steps in this direction have already been taken.”

https://www.ncbi.nlm.nih.gov/pubmed/31934840

http://www.eurekaselect.com/178302/article

Activation of cannabinoid receptor type 2 reduces lung ischemia reperfusion injury through PI3K/Akt pathway.

Image result for int j clin exp pathol“Cannabinoid receptor-2 activation plays a protective role against ischemic reperfusion injury (IRI) in various organs, and exerts a protective effect against paraquat-induced acute lung injury, while the role of CB2 in lung IRI remains unclear.

Hence, the present study was designed to explore the role of CB2 in lung IRI, and whether the PI3K pathway was involved.

The study suggested that activation of CB2 receptor plays a protective role against IR-induced lung injury through reducing inflammation in mice.

The PI3K/Akt pathway might be involved in the protective effect of CB2 receptors in lung IRI.”

https://www.ncbi.nlm.nih.gov/pubmed/31933805

Disease-modifying effects of natural Δ9-tetrahydrocannabinol in endometriosis-associated pain.

eLife logo

“Endometriosis is a chronic painful disease highly prevalent in women that is defined by growth of endometrial tissue outside the uterine cavity and lacks adequate treatment.

Medical use of cannabis derivatives is a current hot topic and it is unknown whether phytocannabinoids may modify endometriosis symptoms and development.

Here we evaluate the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) in a mouse model of surgically-induced endometriosis.

In this model, female mice develop mechanical hypersensitivity in the caudal abdomen, mild anxiety-like behavior and substantial memory deficits associated with the presence of extrauterine endometrial cysts.

Interestingly, daily treatments with THC (2 mg/kg) alleviate mechanical hypersensitivity and pain unpleasantness, modify uterine innervation and restore cognitive function without altering the anxiogenic phenotype. Strikingly, THC also inhibits the development of endometrial cysts.

These data highlight the interest of scheduled clinical trials designed to investigate possible benefits of THC for women with endometriosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31931958

https://elifesciences.org/articles/50356

The role of cannabinoids in epilepsy treatment: a critical review of efficacy results from clinical trials.

Image result for Epileptic Disorders journal “CBD was shown to have anti-seizure activity based on in vitro and in vivo models.

However, several reports of small series or case reports of the use of cannabis extracts in epilepsy yielded contradictory results and the efficacy of cannabis use in patients with epilepsy have also been inconclusive.

In 2013, the first Phase 1 trial for a purified form of CBD (Epidiolex/Epidyolex; >99% CBD), developed by GW Pharma, showed some efficacy signals and subsequently, a comprehensive program on the efficacy and tolerability of this compound for the treatment of drug-resistant epilepsies was initiated.

Results of these trials led to the FDA and EMA approval respectively in 2018 and 2019 for the treatment of seizures associated with two rare epilepsies: Lennox-Gastaut syndrome (LGS) or Dravet syndrome (DS) in patients two years of age and older.

Thus, CBD became the first FDA-approved purified drug substance derived from cannabis and also the first FDA-approved drug for the treatment of seizures in DS.

We detail the clinical studies using purified CBD (Epidiolex/Epidyolex), including the first open interventional exploratory study and Randomized Control Ttrials for DS and LGS.”

https://www.ncbi.nlm.nih.gov/pubmed/31916540

https://www.jle.com/fr/revues/epd/e-docs/the_role_of_cannabinoids_in_epilepsy_treatment_a_critical_review_of_efficacy_results_from_clinical_trials_316030/article.phtml

The proposed mechanism of action of CBD in epilepsy.

Image result for Epileptic Disorders journal“Highly purified cannabidiol (CBD) (approved as Epidiolex® in the United States) has demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut or Dravet syndrome in four randomized controlled trials.

While the mechanism of action of CBD underlying the reduction of seizures in humans is unknown, CBD possesses affinity for multiple targets, across a range of target classes, resulting in functional modulation of neuronal excitability, relevant to the pathophysiology of many disease types, including epilepsy.

Here we present the pharmacological data supporting the role of three such targets, namely Transient receptor potential vanilloid-1 (TRPV1), the orphan G protein-coupled receptor-55 (GPR55) and the equilibrative nucleoside transporter 1 (ENT-1).”

Efficacy and Tolerance of Synthetic Cannabidiol for Treatment of Drug Resistant Epilepsy.

Image result for frontiers in neurology“Controlled and open label trials have demonstrated efficacy of cannabidiol for certain epileptic encephalopathies.

However, plant derived cannabidiol products have been used almost exclusively. Efficacy of synthetically derived cannabidiol has not been studied before.

The objective of this study was to evaluate tolerability and efficacy of synthetic cannabidiol in patients with pharmacoresistant epilepsy.

Efficacy and tolerance in our study of synthetic CBD treatment in pharmacoresistant epilepsy is similar to open label studies using plant derived CBD.

Regarding economic and ecological aspects, synthetic cannabidiol might be a reasonable alternative to plant derived cannabidiol.”

https://www.ncbi.nlm.nih.gov/pubmed/31920934

“Over the last decade, the therapeutic use of cannabidiol (CBD) in intractable epilepsies has increased considerably. Its anticonvulsant properties have been shown in several animal models for acute and chronic epilepsy.

Recent randomized, controlled trials have demonstrated that CBD is superior to placebo in seizure reduction in children with Dravet syndrome and patients with Lennox-Gastaut syndrome. In addition, open label studies indicate that cannabidiol has anticonvulsive properties in a broader range of epilepsy syndromes and etiologies.

In summary, the results of this study provide class III evidence of efficacy and safety of synthetic cannabidiol in children and adults with pharmacoresistant epilepsy. Additional studies investigating efficacy and tolerance of synthetic CBD in larger cohorts are needed.”

https://www.frontiersin.org/articles/10.3389/fneur.2019.01313/full

Efficacy of cannabidiol in subjects with refractory epilepsy relative to concomitant use of clobazam.

Epilepsy Research“To evaluate the efficacy of open-label, highly purified cannabidiol (CBD, Epidiolex®) in treating refractory epilepsy relative to the concomitant use of clobazam (CLB) as well as the clinical implications of changes in CLB and norclobazam (nCLB) levels.”

“With or without concomitant CLB, CBD may be effective in reducing seizure frequency.”   https://www.sciencedirect.com/science/article/abs/pii/S0920121119303778?via%3Dihub

“With or without concomitant CLB, CBD can be effective in reducing seizure frequency. “

https://www.ncbi.nlm.nih.gov/pubmed/31923763

Cannabidiol-induced panicolytic-like effects and fear-induced antinociception impairment: the role of the CB1 receptor in the ventromedial hypothalamus.

Image result for Springer Link“The behavioural effects elicited by chemical constituents of Cannabis sativa, such as cannabidiol (CBD), on the ventromedial hypothalamus (VMH) are not well understood. There is evidence that VMH neurons play a relevant role in the modulation of unconditioned fear-related defensive behavioural reactions displayed by laboratory animals.

OBJECTIVES:

This study was designed to explore the specific pattern of distribution of the CB1 receptors in the VMH and to investigate the role played by this cannabinoid receptor in the effect of CBD on the control of defensive behaviours and unconditioned fear-induced antinociception.

METHODS:

A panic attack-like state was triggered in Wistar rats by intra-VMH microinjections of N-methyl-D-aspartate (NMDA). One of three different doses of CBD was microinjected into the VMH prior to local administration of NMDA. In addition, the most effective dose of CBD was used after pre-treatment with the CB1 receptor selective antagonist AM251, followed by NMDA microinjections in the VMH.

RESULTS:

The morphological procedures demonstrated distribution of labelled CB1 receptors on neuronal perikarya situated in dorsomedial, central and ventrolateral divisions of the VMH. The neuropharmacological approaches showed that both panic attack-like behaviours and unconditioned fear-induced antinociception decreased after intra-hypothalamic microinjections of CBD at the highest dose (100 nmol). These effects, however, were blocked by the administration of the CB1 receptor antagonist AM251 (100 pmol) in the VMH.

CONCLUSION:

These findings suggest that CBD causes panicolytic-like effects and reduces unconditioned fear-induced antinociception when administered in the VMH, and these effects are mediated by the CB1 receptor-endocannabinoid signalling mechanism in VMH.”

https://www.ncbi.nlm.nih.gov/pubmed/31919563

https://link.springer.com/article/10.1007%2Fs00213-019-05435-5

“panicolytic: That reduces the flight reflex in animals when faced with danger. Any drug that has this effect.” https://en.wiktionary.org/wiki/panicolytic