Agitation, Oxidative Stress, and Cytokines in Alzheimer Disease: Biomarker Analyses From a Clinical Trial With Nabilone for Agitation.

 Image result for journal of geriatric psychiatry and neurology

“The endocannabinoid system has been a target of interest for agitation in Alzheimer disease (AD) because of potential behavioral effects and its potential impact on mechanisms implicated in AD such as oxidative stress (OS) and neuroinflammation.

We explored whether serum markers of OS and neuroinflammation were associated with response to the cannabinoid nabilone in agitated patients with AD (N = 38).

These findings suggest that OS and neuroinflammation may be associated with agitation severity, while nabilone may have anti-inflammatory effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31547752

https://journals.sagepub.com/doi/abs/10.1177/0891988719874118?journalCode=jgpb

Comparative studies of endocannabinoid modulation of pain.

Philosophical Transactions of the Royal Society B: Biological Sciences cover image

“Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech Hirudo verbana. Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue ‘Evolution of mechanisms and behaviour important for pain’.”

https://www.ncbi.nlm.nih.gov/pubmed/31544609

https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0279

Selective Cannabinoid 2 Receptor Agonists as Potential Therapeutic Drugs for the Treatment of Endotoxin-Induced Uveitis.

molecules-logo“The cannabinoid 2 receptor (CB2R) is a promising anti-inflammatory drug target and development of selective CB2R ligands may be useful for treating sight-threatening ocular inflammation. This study examined the pharmacology of three novel chemically-diverse selective CB2R ligands. These unique ligands are potent and selective for CB2R and have good immunomodulating actions in the eye. The data generated with these three structurally-diverse and highly-selective CB2R agonists support selective targeting of CB2R for treating ocular inflammatory diseases.”
https://www.ncbi.nlm.nih.gov/pubmed/31540271
https://www.mdpi.com/1420-3049/24/18/3338

Druggable Targets of the Endocannabinoid System: Implications for the Treatment of HIV-Associated Neurocognitive Disorder.

Brain Research“HIV-associated neurocognitive disorder (HAND) affects nearly half of all HIV-infected individuals. Synaptodendritic damage correlates with neurocognitive decline in HAND, and many studies have demonstrated that HIV-induced neuronal injury results from excitotoxic and inflammatory mechanisms.

The endocannabinoid (eCB) system provides on-demand protection against excitotoxicity and neuroinflammation.

Here, we discuss evidence of the neuroprotective and anti-inflammatory properties of the eCB system from in vitro and in vivo studies. We examine the pharmacology of the eCB system and evaluate the therapeutic potential of drugs that modulate eCB signaling to treat HAND.

Finally, we provide perspective on the need for additional studies to clarify the role of the eCB system in HIV neurotoxicity and speculate that strategies that enhance eCB signaling might slow cognitive decline in HAND.”

https://www.ncbi.nlm.nih.gov/pubmed/31539547

https://www.sciencedirect.com/science/article/abs/pii/S0006899319305219?via%3Dihub

Medical cannabis for chronic pain: can it make a difference in pain management?

 “Globally, chronic pain is a major therapeutic challenge and affects more than 15% of the population. As patients with painful terminal diseases may face unbearable pain, there is a need for more potent analgesics.

Although opioid-based therapeutic agents received attention to manage severe pain, their adverse drug effects and mortality rate associated with opioids overdose are the major concerns.

Evidences from clinical trials showed therapeutic benefits of cannabis, especially delta-9-tetrahydrocannabinol and cannabinoids reduced neuropathic pain intensity in various conditions. Also, there are reports on using combination cannabinoid therapies for chronic pain management.

The association of cannabis dependence and addiction has been discussed much and the reports mentioned that it can be comparatively lower than other substances such as nicotine and alcohol.

More countries have decided to legalise the medicinal use of cannabis and marijuana.

Healthcare professionals should keep themselves updated with the changing state of medical cannabis and its applications.”

https://www.ncbi.nlm.nih.gov/pubmed/31535218

https://link.springer.com/article/10.1007%2Fs00540-019-02680-y

The Impact of Cannabinoid Receptor 2 Deficiency on Neutrophil Recruitment and Inflammation.

View details for DNA and Cell Biology cover image“Neutrophil trafficking into damaged or infected tissues is essential for the initiation of inflammation, clearance of pathogens and damaged cells, and ultimately tissue repair. Neutrophil recruitment is highly dependent on the stepwise induction of adhesion molecules and promigratory chemokines and cytokines.

A number of studies in animal models have shown the efficacy of cannabinoid receptor 2 (CB2) agonists in limiting inflammation in a range of preclinical models of inflammation, including colitis, atherosclerosis, multiple sclerosis, and ischemia-reperfusion injury.

Recent work in preclinical models of inflammation raises two questions: by what mechanisms do CB2 agonists provide anti-inflammatory effects during acute inflammation and what challenges exist in the translation of CB2 modulating therapeutics into the clinic.”

The Endocannabinoid System of Animals.

 animals-logo“The endocannabinoid system has been found to be pervasive in mammalian species. It has also been described in invertebrate species as primitive as the Hydra. Insects, apparently, are devoid of this, otherwise, ubiquitous system that provides homeostatic balance to the nervous and immune systems, as well as many other organ systems.

The endocannabinoid system (ECS) has been defined to consist of three parts, which include (1) endogenous ligands, (2) G-protein coupled receptors (GPCRs), and (3) enzymes to degrade and recycle the ligands. Two endogenous molecules have been identified as ligands in the ECS to date.

The endocannabinoids are anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol). Two G-coupled protein receptors (GPCR) have been described as part of this system, with other putative GPC being considered.

Coincidentally, the phytochemicals produced in large quantities by the Cannabis sativa L plant, and in lesser amounts by other plants, can interact with this system as ligands. These plant-based cannabinoids are termed phytocannabinoids.

The precise determination of the distribution of cannabinoid receptors in animal species is an ongoing project, with the canine cannabinoid receptor distribution currently receiving the most interest in non-human animals.”

https://www.ncbi.nlm.nih.gov/pubmed/31527410

https://www.mdpi.com/2076-2615/9/9/686

Cannabinoids in Gynecological Diseases

Related image“The endocannabinoid system (ECS) is a multifunctional homeostatic system involved in many physiological and pathological conditions. The ligands of the ECS are the endo­cannabinoids, whose actions are mimicked by exogenous cannabinoids, such as phytocannabinoids and synthetic cannabinoids. Responses to the ligands of the ECS are mediated by numerous receptors like the classical cannabinoid receptors (CB1 and CB2) as well as ECS-related receptors, e.g., G protein-coupled receptors 18 and 55 (GPR18 and GPR55), transient receptor potential ion channels, and nuclear peroxisome proliferator-activated receptors. The ECS regulates almost all levels of female reproduction, starting with oocyte production through to parturition. Dysregulation of the ECS is associated with the development of gynecological disorders from fertility disorders to cancer. Cannabinoids that act at the ECS as specific agonists or antagonists may potentially influence dysregulation and, therefore, represent new therapeutic options for the therapy of gynecological disorders.”

https://www.karger.com/Article/FullText/499164

Evaluation of the effects of cannabinoids CBD and CBG on human ovarian cancer cells in vitro

University of Huddersfield“Ovarian cancer, with over a 90% reoccurrence within 18 months of treatment, and approximately a 30% mortality rate after 5 years, is the leading cause of death in cases of gynaecological malignancies. Acquired resistance, and toxic side effects by clinically used agents are major challenges associated with current treatments, indicating the need for new approaches in ovarian cancer treatment.

Increased tumour cell proliferation associated with upregulation of cannabinoid (CB) receptors has been observed in ovarian cancer. As cannabinoids reported to bind to CB receptors, and can potentially modulate their downstream signalling, this raises the possibility of cannabinoids as potential anticancer drugs for ovarian cancer treatment.

Amongst the cannabinoids, non-psychoactive CBD and CBG have been shown to have anticancer activities towards prostate and colon cancer cells through multiple mechanisms of action. However, CBD and CBG have yet to be investigated in relation to ovarian cancer therapy either in vitro or in vivo.

Aim:

The aims of this study were to evaluate the potential cytotoxic effects of CBD and CBG in human ovarian cancer cells, their ability to potentiate existing clinically used agents for ovarian cancer, and to perform initial mode of action studies in vitro.

Conclusions:

Both CBD and CBG showed preferential cytotoxicity against the ovarian cancer cells analysed compared to the non-cancer cells; however, this was less than for carboplatin. Importantly, in contrast to carboplatin, CBD and CBG showed similar activity towards cisplatin sensitive and cisplatin resistant cells indicating distinctive mechanisms of action to platinum drugs.

Preferential cytotoxicity towards cancer cells in vitro and ability to potentiate carboplatin and overcome cisplatin resistance identify CBD and CBG as promising candidates that warrant further investigation, both in terms of detailed mechanism of action studies and also in vivo studies to assess whether this promising activity translates into an in vivo setting and their potential for further progression towards the clinic.”

http://eprints.hud.ac.uk/id/eprint/34866/

Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1.

Redox Biology“Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that attracted a great attention for its therapeutic potential against different pathologies including skin diseases.

However, although the efficacy in preclinical models and the clinical benefits of CBD in humans have been extensively demonstrated, the molecular mechanism(s) and targets responsible for these effects are as yet unknown.

Herein we characterized at the molecular level the effects of CBD on primary human keratinocytes using a combination of RNA sequencing (RNA-Seq) and sequential window acquisition of all theoretical mass spectrometry (SWATH-MS).

Functional analysis revealed that CBD regulated pathways involved in keratinocyte differentiation, skin development and epidermal cell differentiation among other processes. In addition, CBD induced the expression of several NRF2 target genes, with heme oxygenase 1 (HMOX1) being the gene and the protein most upregulated by CBD. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrated that the induction of HMOX1 mediated by CBD, involved nuclear export and proteasomal degradation of the transcriptional repressor BACH1.

Notably, we showed that the effect of BACH1 on HMOX1 expression in keratinocytes is independent of NRF2. In vivo studies showed that topical CBD increased the levels of HMOX1 and of the proliferation and wound-repair associated keratins 16 and 17 in the skin of mice.

Altogether, our study identifies BACH1 as a molecular target for CBD in keratinocytes and sets the basis for the use of topical CBD for the treatment of different skin diseases including atopic dermatitis and keratin disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31518892

https://www.sciencedirect.com/science/article/pii/S2213231719306470?via%3Dihub