Modulation of the endocannabinoid system: vulnerability factor and new treatment target for stimulant addiction

Image result for frontiers in psychiatry“Interestingly, increasing recent evidence points toward the involvement of the endocannabinoid system (ECBS) in the neurobiological processes related to stimulant addiction.

This article presents an up-to-date review with deep insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. This article aims to: (1) review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction.

A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoids in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants.

Interestingly, emerging human data supports a role for ECBS modulation in vulnerability to psychostimulant addiction, and more significantly in addictive behaviors among dependent individuals. Accumulating evidence thus points to the ECBS as a critical target for the development of pharmacotherapies for the treatment of addiction to psychostimulants.

Given the various neuropharmacological actions of exogenous cannabinoids, and their ability to modulate the acute reinforcing effects of drugs, data on Δ9-THC and CBD is particularly promising as to the potential use of cannabinoids in relapse prevention strategies for psychostimulant-dependent individuals.”

https://www.frontiersin.org/articles/10.3389/fpsyt.2013.00109/full

Cannabidiol attenuates seizures and EEG abnormalities in Angelman syndrome model mice.

 Image result for J Clin Invest.“Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, lack of speech, ataxia, EEG abnormalities, and epilepsy. Seizures in AS individuals are common, debilitating, and often drug-resistant. Therefore, there is an unmet need for better treatment options.

Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, has antiseizure activity and behavioral benefits in preclinical and clinical studies for some disorders associated with epilepsy, suggesting that the same could be true for AS.

Here we show that acute CBD (100 mg/kg) attenuated hyperthermia- and acoustically-induced seizures in a mouse model of AS. However, neither acute CBD nor a two-weeklong course of CBD administered immediately after a kindling protocol could halt the pro-epileptogenic plasticity observed in AS model mice.

CBD had a dose-dependent sedative effect, but did not have an impact on motor performance. CBD abrogated the enhanced intracortical local field potential power, including delta and theta rhythms observed in AS model mice, indicating that CBD administration could also help normalize the EEG deficits observed in individuals with AS.

Our results provide critical preclinical evidence supporting CBD treatment of seizures and alleviation of EEG abnormalities in AS, and will thus help guide the rational development of CBD as an AS treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31503547

https://www.jci.org/articles/view/130419

“CBD Could Help Treat Angelman Syndrome, Says Study”   https://www.analyticalcannabis.com/articles/cbd-could-help-treat-angelman-syndrome-says-study-311798

“Medical marijuana saved the life of 8 year old boy with Angelman Syndrome”   http://www.chicagonow.com/soapbox-momma/2016/05/medical-marijuana-saved-the-life-of-8-year-old-boy-with-angelman-syndrome/

Cannabidiol improves metabolic dysfunction in middle-aged diabetic rats submitted to a chronic cerebral hypoperfusion.

Chemico-Biological Interactions“Cannabidiol (CBD), a compound obtained from Cannabis sativa, has wide range of therapeutic properties, including mitigation of diabetes and neurodegeneration.

Cerebral ischemia and consequent learning disabilities are aggravated in elderly diabetic subjects. However, there are no studies showing the effect of CBD treatment in elderly diabetes patients suffering cerebral ischemia.

The present work tested the hypothesis that CBD treatment improves metabolic dysfunctions in middle-aged diabetic rats submitted to chronic cerebral hypoperfusion.

CBD may be used as therapeutic tool to protect metabolism against injuries from diabetes aggravated by cerebral ischemia.”

https://www.ncbi.nlm.nih.gov/pubmed/31499052

“CBD reduced hyperglycemia of middle-aged diabetic rats with CCH. CBD increased insulin secretion and decreased AGEs levels. CBD reduced fructosamine, LDL, HDL, triglycerides and total cholesterol levels. CBD presented hepatoprotective effect. CBD could mitigate neurodegeneration caused by DM associated to cerebral ischemia.”

https://www.sciencedirect.com/science/article/abs/pii/S000927971930701X?via%3Dihub

The effects of cannabis, cannabinoids, and their administration routes on pain control efficacy and safety: A systematic review and network meta-analysis.

“To determine the effects of cannabis, cannabinoids, and their administration routes on pain and adverse euphoria events.

Randomized controlled trials investigating the effects of cannabis or cannabinoids on pain reduction.

RESULTS:

A total of 25 studies involving 2270 patients were included. We found that delta-9-tetrahydrocannabinol/cannabidiol (THC/CBD) (oromucosal route), THC (oromucosal route), and standardized dried cannabis (with THC; SCT; inhalation route) could reduce neuropathic pain score (SMD -0.41, 95% CI -0.7 to -0.1; -0.61, 95% CI -1.2 to -0.02; and -0.77, 95% CI -1.4 to -0.2; respectively). For nociceptive pain, only standardized cannabis extract (with THC; SCET) via oral route could reduce pain score (SMD -1.8, 95% C; -2.4 to -1.2). In cancer pain, THC/CBD via oromucosal route and THC via oral or oromucosal route could reduce pain score (SMD -0.7, 95% CI -1.2 to -0.2; and -2.1, 95% CI -2.8 to -1.4; respectively). No study was observed for THC/CBD via oral route or inhalation or THC via inhalation for cancer and nociceptive pain, SCET via oromucosal route or inhalation for neuropathic and cancer pain, THC via oromucosal route for nociceptive pain, and SCT via oromucosal or oral route for neuropathic, cancer, and nociceptive pain. Statistically significant increased risks of euphoria were observed in THC/CBD (oromucosal), THC (oromucosal), and SCT (inhalation).

CONCLUSION:

The use of cannabis and cannabinoids via certain administration routes could reduce different types of pain. Product developers could consider our findings as part of their product design so that the effective route of cannabis and cannabinoids for pain control can be achieved.”

https://www.ncbi.nlm.nih.gov/pubmed/31495691

https://www.japha.org/article/S1544-3191(19)30353-X/fulltext

Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways.

 Image result for frontiers in immunology“Multiple sclerosis (MS) is a chronic and disabling disorder of the central nervous system (CNS) characterized by neuroinflammation leading to demyelination.

Recently a combination of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) extracted from Cannabis has been approved in many parts of the world to treat MS-related spasticity. THC+CBD combination was also shown to suppresses neuroinflammation, although the mechanisms remain to be further elucidated.

In the current study, we demonstrate that THC+CBD combination therapy (10 mg/kg each) but not THC or CBD alone, attenuates murine experimental autoimmune encephalomyelitis (EAE) by reducing neuroinflammation and suppression of Th17 and Th1 cells.

Collectively, this study suggests that combination of THC+CBD suppresses neuroinflammation and attenuates clinical EAE development and that this effect is associated with changes in miRNA profile in brain-infiltrating cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31497013

“Combination of THC+CBD has been used to treat human MS. This treatment is known to decrease not only muscle spasticity but also suppress neuroinflammation.”

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01921/full

Real world experience of patients with amyotrophic lateral sclerosis (ALS) in the treatment of spasticity using tetrahydrocannabinol:cannabidiol (THC:CBD).

Image result for bmc neurology“Treatment of spasticity poses a major challenge in amyotrophic lateral sclerosis (ALS) patient management.

Delta-9-tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray (THC:CBD), approved for the treatment of spasticity in multiple sclerosis, serves as a complementary off-label treatment option in ALS-related spasticity.

The mean dose THC:CBD were 5.5 daily actuations (range < 1 to 20). Three subgroups of patients were identified: 1) high-dose daily use (≥ 7 daily actuations, 34%, n = 11), 2) low-dose daily use (< 7 daily actuations, 50%, n = 16), 3) infrequent use (< 1 daily actuation, 16%, n = 5). Overall NPS was + 4.9 (values above 0 express a positive recommendation to fellow patients). Remarkably, patients with moderate to severe spasticity (NRS ≥ 4) reported a high recommendation rate (NPS: + 29) in contrast to patients with mild spasticity (NRS < 4; NPS: - 44). For the three main domains of TSQM-9 high mean satisfaction levels were found (maximum value 100): effectiveness 70.5 (±22.3), convenience 76.6 (±23.3) and global satisfaction 75.0 (±24.7).

CONCLUSION:

THC:CBD is used in a wide dose range suggesting that the drug was applied on the basis of individual patients’ needs and preferences. Contributing to this notion, moderate to severe spasticity was associated with an elevated number of daily THC:CBD actuations and stronger recommendation rate (NPS) as compared to patients with mild spasticity. Overall, treatment satisfaction (TSQM-9) was high. The results suggest that THC:CBD may serve as a valuable addition in the spectrum of symptomatic therapy in ALS. However, prospective studies and head-to-head comparisons to other spasticity medications are of interest to further explore the effectiveness of THC:CBD in the management of spasticity, and other ALS-related symptoms.”

“Overall, patients reported outcomes as assessed by TSQM-9 revealed a high treatment satisfaction with THC:CBD. The results of our study suggest that THC:CBD may serve as an important addition to the spectrum of treatment options of spasticity in ALS.”

The Effectiveness of Cannabinoids in the Treatment of Posttraumatic Stress Disorder (PTSD): A Systematic Review.

Publication CoverPosttraumatic stress disorder (PTSD) is a potentially debilitating mental health problem.

There has been a recent surge of interest regarding the use of cannabinoids in the treatment of PTSD.

We therefore sought to systematically review and assess the quality of the clinical evidence of the effectiveness of cannabinoids for the treatment of PTSD.

We found that cannabinoids may decrease PTSD symptomology, in particular sleep disturbances and nightmares.

Evidence that cannabinoids may help reduce global PTSD symptoms, sleep disturbances, and nightmares indicates that future well-controlled, randomized, double-blind clinical trials are highly warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/31479625

https://www.tandfonline.com/doi/full/10.1080/15504263.2019.1652380

[Dronabinol in geriatric pain and palliative care patients : A retrospective evaluation of statutory-health-insurance-covered outpatient medical treatment].

 

“Geriatric patients often suffer from a long history of pain and have a limited life expectancy.

Cannabinoid receptor agonists like dronabinol may be an effective, low-risk treatment option for geriatric patients with chronic pain.

OBJECTIVES:

The effectiveness and side effects of dronabinol therapy in geriatric patients are analyzed. The effects of the approval requirement are presented.

RESULTS:

By using dronabinol, 21 of the 40 geriatric patients (52.5%) achieved pain relief of more than 30%, 10% of the patients of more than 50%. On average, about four symptoms or side effects related to previous treatment were positively influenced. 26% of patients reported side effects. The rejection rates on the part of the health insurances were 38.7% (group A) and 10.3% (group B).

CONCLUSIONS:

This study is one of the few analyses of the use of Dronabinol in geriatric patients. We show that cannabis-based drugs (in this case dronabinol) are an effective, low-risk treatment option that should be considered early in therapy. Regarding the indication spectrum, further clinical studies and an approval-free test phase are necessary.”

https://www.ncbi.nlm.nih.gov/pubmed/31473816

https://link.springer.com/article/10.1007%2Fs00482-019-00408-1

Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists.

Biochemical Pharmacology“Cannabinoid receptors type 1 (CB1) and type 2 (CB2) are promising targets for a number of diseases, including obesity, neuropathic pain, and multiple sclerosis, among others.

Upon ligand-mediated activation of these receptors, multiple receptor conformations could be stabilized, resulting in a complex pattern of possible intracellular effects. Although numerous compounds have been developed and widely used to target cannabinoid receptors, their mode of action and signaling properties are often only poorly characterized.

From a drug development point of view, unraveling the underlying complex signaling mechanism could offer the possibility to generate medicines with the desired therapeutic profile.

Recently, an increased interest has emerged for the development of agonists that are signaling pathway-selective and thereby do not evoke on-target adverse effects. This phenomenon, in which specific pathways are preferred upon receptor activation by certain ligands, is also known as ‘biased signaling’.

For a particular group of cannabinoid receptor ligands (i.e. CB1/CB2 agonists), namely the synthetic cannabinoid receptor agonists (SCRAs), the research on biased signaling is still in its infancy and interesting outcomes are only recently being revealed.

Therefore, this review aims at providing insights into the recent knowledge about biased agonism mediated by SCRAs so far. In addition, as these outcomes are obtained using a distinct panel of functional assays, the accompanying difficulties and challenges when comparing functional outcomes are critically discussed. Finally, some guidance on the conceptualization of ideal in vitro assays for the detection of SCRA-mediated biased agonism, which is also relevant for compounds belonging to other chemical classes, is provided.”

https://www.ncbi.nlm.nih.gov/pubmed/31472128

https://www.sciencedirect.com/science/article/abs/pii/S0006295219303132?via%3Dihub

The cannabinoid receptor 1 is involved in renal fibrosis during chronic allograft dysfunction: Proof of concept.

Publication cover image“Chronic allograft dysfunction (CAD), defined as the replacement of functional renal tissue by extracellular matrix proteins, remains the first cause of graft loss.

The aim of our study was to explore the potential role of the cannabinoid receptor 1 (CB1) during CAD.

Overall, our study strongly suggests an involvement of the cannabinoid system in the progression of fibrosis during CAD and indicates the therapeutic potential of CB1 antagonists in this pathology.”

https://www.ncbi.nlm.nih.gov/pubmed/31469511

https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.14570