Clinicians’ Guide to Cannabidiol and Hemp Oils.

Mayo Clinic“Cannabidiol (CBD) oils are low tetrahydrocannabinol products derived from Cannabis sativa that have become very popular over the past few years. Patients report relief for a variety of conditions, particularly pain, without the intoxicating adverse effects of medical marijuana.

In June 2018, the first CBD-based drug, Epidiolex, was approved by the US Food and Drug Administration for treatment of rare, severe epilepsy, further putting the spotlight on CBD and hemp oils.

There is a growing body of preclinical and clinical evidence to support use of CBD oils for many conditions, suggesting its potential role as another option for treating challenging chronic pain or opioid addiction.

Care must be taken when directing patients toward CBD products because there is little regulation, and studies have found inaccurate labeling of CBD and tetrahydrocannabinol quantities.

This article provides an overview of the scientific work on cannabinoids, CBD, and hemp oil and the distinction between marijuana, hemp, and the different components of CBD and hemp oil products.

We summarize the current legal status of CBD and hemp oils in the United States and provide a guide to identifying higher-quality products so that clinicians can advise their patients on the safest and most evidence-based formulations.

This review is based on a PubMed search using the terms CBD, cannabidiol, hemp oil, and medical marijuana. Articles were screened for relevance, and those with the most up-to-date information were selected for inclusion.”

https://www.ncbi.nlm.nih.gov/pubmed/31447137

https://www.mayoclinicproceedings.org/article/S0025-6196(19)30007-2/fulltext

Preclinical evidence on the anticancer properties of phytocannabinoids

Image result for CROSBI“Phytocannabinoids are unique terpenophenolic compounds predominantly produced in the glandular trichomes of the cannabis plant (Cannabis sativa L.). The delta-9- tetrahydrocannabinol (THC) is the main active constituent responsible for the plant’s psychoactive effect and, together with the non- psychoactive cannabidiol (CBD), the most investigated naturally occurring cannabinoid.

The first report on the antitumor properties of cannabis compounds appeared more than forty years ago, but the potential of targeting the endocannabinoid system in cancer has recently attracted increasing interest. Our study aimed to review the last decade’s findings on the anticancer potential of plant- derived cannabinoids and the possible mechanisms of their activity.

A large body of in vitro data has been accumulated demonstrating that phytocannabinoids affect a wide spectrum of tumor cells, including gliomas, neuroblastomas, hepatocarcinoma as well as skin, prostate, breast, cervical, colon, pancreatic, lung and hematological cancer.

It has been found that they can stop the uncontrolled growth of cancer cells through the cell-cycle arrest, inhibition of cell proliferation and induction of autophagy and apoptosis. They can also block all the steps of tumor progression, including tumor cell migration, adhesion and invasion as well as angiogenesis. The observed effects are mainly mediated by the cannabinoid CB1 and/or CB2 receptors, although some other receptors and mechanisms unrelated to receptor stimulation may also be involved.

The majority of available animal studies confirmed that phytocannabinoids are capable of effectively decreasing cancer growth and metastasis in vivo. THC was found to be effective against experimental glioma, liver, pancreatic, breast and lung cancer while CBD showed activity against glioma and neuroblastoma, melanoma, colon, breast, prostate and lung cancer. Further in vitro and in vivo studies also greatly support their use in combination with traditional chemotherapy or radiotherapy, which results in improved efficiency, attenuated toxicity or reduced drug resistance.

Taken together most of available preclinical results emphasize the extensive therapeutic potential of THC and CBD in various types of cancers. The potential clinical interest of cannabinoids is additionally suggested by their selectivity for tumor cells as well as their good tolerance and the absence of normal tissue toxicity, which are still the major limitations of most conventional drugs. The accumulated preclinical evidence strongly suggests the need for clinical testing of cannabinoids in cancer patients.”

Cannabidiol attenuates insular dysfunction during motivational salience processing in subjects at clinical high risk for psychosis.

Image result for translational psychiatry “Accumulating evidence points towards the antipsychotic potential of cannabidiol. However, the neurocognitive mechanisms underlying the antipsychotic effect of cannabidiol remain unclear.

We investigated this in a double-blind, placebo-controlled, parallel-arm study. We investigated 33 antipsychotic-naïve subjects at clinical high risk for psychosis (CHR) randomised to 600 mg oral cannabidiol or placebo and compared them with 19 healthy controls.

We used the monetary incentive delay task while participants underwent fMRI to study reward processing, known to be abnormal in psychosis. Reward and loss anticipation phases were combined to examine a motivational salience condition and compared with neutral condition.

We observed abnormal activation in the left insula/parietal operculum in CHR participants given placebo compared to healthy controls associated with premature action initiation. Insular activation correlated with both positive psychotic symptoms and salience perception, as indexed by difference in reaction time between salient and neutral stimuli conditions.

CBD attenuated the increased activation in the left insula/parietal operculum and was associated with overall slowing of reaction time, suggesting a possible mechanism for its putative antipsychotic effect by normalising motivational salience and moderating motor response.”

https://www.ncbi.nlm.nih.gov/pubmed/31439831

https://www.nature.com/articles/s41398-019-0534-2

The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson’s disease.

Progress in Neuro-Psychopharmacology and Biological Psychiatry“Parkinson’s disease (PD) is a neurodegenerative disease and its characteristic is the progressive degeneration of dopaminergic neurons within the substantia nigra (SN) of the midbrain. There is hardly any clinically proven efficient therapeutics for its cure in several recent preclinical advances proposed to treat PD.

Recent studies have found that the endocannabinoid signaling system in particular the comprised two receptors, CB1 and CB2 receptors, has a significant regulatory function in basal ganglia and is involved in the pathogenesis of PD. Therefore, adding new insights into the biochemical interactions between cannabinoids and other signaling pathways may help develop new pharmacological strategies.

Factors of the endocannabinoid system (ECS) are abundantly expressed in the neural circuits of basal ganglia, where they interact interactively with glutamatergic, γ-aminobutyric acid-ergic (GABAergic), and dopaminergic signaling systems. Although preclinical studies on PD are promising, the use of cannabinoids at the clinical level has not been thoroughly studied.

In this review, we evaluated the available evidence and reviewed the involvement of ECS in etiologies, symptoms and treatments related to PD. Since CB1 and CB2 receptors are the two main receptors of endocannabinoids, we primarily put the focus on the therapeutic role of CB1 and CB2 receptors in PD. We will try to determine future research clues that will help understand the potential therapeutic benefits of the ECS in the treatment of PD, aiming to open up new strategies and ideas for the treatment of PD.”

https://www.ncbi.nlm.nih.gov/pubmed/31442553

https://www.sciencedirect.com/science/article/pii/S0278584619302210?via%3Dihub

Cannabidiol reduces seizures following CNS infection with Theiler’s murine encephalomyelitis virus.

Publication cover image“C57BL/6J mice infected with Theiler’s murine encephalomyelitis virus (TMEV) develop acute behavioral seizures in the first week of infection and later develop chronic epilepsy. The TMEV model provides a useful platform to test novel antiseizure therapeutics.

The present study was designed to test the efficacy of cannabidiol (CBD) in reducing acute seizures induced by viral infection.

RESULTS:

Cannabidiol (180 mg/kg; 360 mg/kg/day) decreased both the frequency and severity of acute behavioral seizures following TMEV infection, but 150 mg/kg of CBD did not improve overall seizure outcome. The time to peak effect (TPE) of CBD in the 6 Hz 32 mA psychomotor seizure test using C57BL/6J mice was observed at 2 hours post-CBD treatment. Interestingly, CBD (150 mg/kg) significantly reduced frequency and severity of TMEV-induced acute seizures at 2 hours post-CBD treatment. These results suggest that CBD could be effective in decreasing TMEV-induced acute seizures when the seizure test is conducted at the TPE of CBD.

SIGNIFICANCE:

Cannabinoids are increasingly studied for their potential antiseizure effects. Several preclinical and clinical studies provide evidence that CBD could be an effective therapy for intractable epilepsies. The present study corroborates those previous findings and provides an opportunity to investigate pharmacokinetics, pharmacodynamics, and mechanism(s) of antiseizure effects of CBD in the TMEV model, which may help to design future clinical studies more effectively.”

https://www.ncbi.nlm.nih.gov/pubmed/31440724

https://onlinelibrary.wiley.com/doi/full/10.1002/epi4.12351

Tetrahydrocannabinol Modulates in Vitro Maturation of Oocytes and Improves the Blastocyst Rates after in Vitro Fertilization.

 

Image result for Cellular Physiology & Biochemistry“Among the assisted reproductive techniques, the in vitro maturation of oocytes (IVM) is less developed than other techniques, but its implementation would entail a qualitative advance.

This technique consists in the extraction of immature oocytes from antral ovarian follicles with the patient under low hormone stimulation or without hormone to mature exogenously in culture media supplemented with different molecules to promote maturation.

In this sense, we are interested in the role that cannabinoids could have as IVM promoters because cannabinoid’s molecular pathway is similar to the one by which oocyte’s meiosis resumption is activated.

With the intention of advancing in the possible use of cannabinoids as supplements for the media for in vitro maturation of oocytes, we intend to deepen the study of the function of the phytocannabinoid Δ-9-tetrahydrocannabinol (THC) in the IVM process.

RESULTS:

This study confirms that the incubation of oocytes with THC during IVM accelerated some events of that process like the phosphorylation pattern of ERK and AKT and was able to increase the blastocyst rate in response to IVF. Moreover, it seems that both CB1 and CB2 are necessary to maintain a healthy oocyte maturation.

CONCLUSION:

Our data suggest that THC may be useful IVM supplements in clinic as is more feasible and reliable than any synthetic cannabinoid.”

https://www.ncbi.nlm.nih.gov/pubmed/31436397

https://www.cellphysiolbiochem.com/Articles/000149/

Cannabidiol differentially regulates basal and LPS-induced inflammatory responses in macrophages, lung epithelial cells, and fibroblasts.

Toxicology and Applied Pharmacology“Cannabidiol (CBD) containing products are available in a plethora of flavors including oral, sublingual, and inhalable forms. Immunotoxicological effects of CBD containing liquids were assessed by hypothesizing that CBD regulates oxidative stress and lipopolysaccharide (LPS) induced inflammatory responses in macrophages, epithelial cells, and fibroblasts.

RESULTS:

CBD showed differential effects on IL-8 and MCP-1, and acellular and cellular ROS levels. CBD significantly attenuated LPS-induced NF-κB activity and IL-8 and MCP-1 release from macrophages. Cytokine array data depicted a differential cytokine response due to CBD. Inflammatory mediators, IL-8, serpin E1, CXCL1, IL-6, MIF, IFN-γ, MCP-1, RANTES, and TNF-α were induced, whereas MCP-1/CCL2, CCL5, eotaxin, IL-1ra, and IL-2 were reduced. CBD and dexamethasone treatments reduced the IL-8 level induced by LPS when the cells were treated individually, but showed antagonistic effects when used in combination via MCPIP (monocytic chemotactic protein-induced protein).

CONCLUSION:

CBD differentially regulated basal pro-inflammatory response and attenuated both LPS-induced cytokine release and NF-κB activity in monocytes, similar to dexamethasone. Thus, CBD has a differential inflammatory response and acts as an anti-inflammatory agent in pro-inflammatory conditions but acts as an antagonist with steroids, overriding the anti-inflammatory potential of steroids when used in combination.”

https://www.ncbi.nlm.nih.gov/pubmed/31437494

https://www.sciencedirect.com/science/article/pii/S0041008X19303217?via%3Dihub

Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-TH1A and TRPV1 receptor mechanisms.

Neuropharmacology“Cocaine abuse continues to be a serious health problem worldwide. Despite intense research there is currently no FDA-approved medication to treat cocaine use disorder. The recent search has been focused on agents targeting primarily the dopamine system, while limited success has been achieved at the clinical level.

Cannabidiol (CBD) is a U.S. FDA-approved cannabinoid for the treatment of epilepsy and recently was reported to have therapeutic potential for other disorders. Here we systemically evaluated its potential utility for the treatment of cocaine addiction and explored the underlying receptor mechanisms in experimental animals.

These findings suggest that CBD may have certain therapeutic utility by blunting the acute rewarding effects of cocaine via a DA-dependent mechanism.”

https://www.ncbi.nlm.nih.gov/pubmed/31437433

https://www.sciencedirect.com/science/article/pii/S0028390819302990?via%3Dihub

Cannabidiol and the Remainder of the Plant Extract Modulate the Effects of Δ9-Tetrahydrocannabinol on Fear Memory Reconsolidation.

Image result for frontiers in behavioral neuroscience “Δ9-Tetrahydrocannabinol (THC, a CB1 receptor agonist) and Cannabidiol (CBD, a non-competitive antagonist of endogenous CB1 and CB2 ligands) are two primary components of Cannabis species, and may modulate fear learning in mammals.

The CB1 receptor is widely distributed throughout the cortex and some limbic regions typically associated with fear learning. Humans with posttraumatic disorder (PTSD) have widespread upregulation of CB1 receptor density and reduced availability of endogenous cannabinoid anandamide, suggesting a role for the endocannabinoid system in PTSD.

Pharmacological blockade of memory reconsolidation following recall of a conditioned response modulates the expression of learned fear and may represent a viable target for the development of new treatments for PTSD.

In this study, we focused on assessing the impact of the key compounds of the marijuana plant both singly and, more importantly, in concert on attenuation of learned fear. Specifically, we assessed the impact of THC, CBD, and/or the remaining plant materials (post-extraction; background material), on reconsolidation of learned fear.

Results: CBD alone, but not THC alone, significantly attenuated fear memory reconsolidation when administered immediately after recall. The effect persisted for at least 7 days. A combination of CBD and THC also attenuated the fear response. Plant BM also significantly attenuated reconsolidation of learned fear both on its own and in combination with THC and CBD. Finally, THC attenuated reconsolidation of learned fear only when co-administered with CBD or plant BM.

Conclusion: CBD may provide a novel treatment strategy for targeting fear-memories. Furthermore, plant BM also significantly attenuated the fear response. However, whereas THC alone had no significant effects, its effects were modulated by the addition of other compounds. Future research should investigate some of the other components present in the plant BM (such as terpenes) for their effects alone, or in combination with isolated pure cannabinoids, on fear learning.”

https://www.ncbi.nlm.nih.gov/pubmed/31417379

https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00174/full

Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management

Journal of Cancer Research and Therapeutics“Cannabis was extensively utilized for its medicinal properties till the 19th century. A steep decline in its medicinal usage was observed later due to its emergence as an illegal recreational drug.

Advances in technology and scientific findings led to the discovery of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis, that further led to the discovery of endogenous cannabinoids system consisting of G-protein-coupled receptors – cannabinoid receptor 1 and cannabinoid receptor 2 along with their ligands, mainly anandamide and 2-arachidonoylglycerol.  Endocannabinoid (EC) is shown to be a modulator not only for physiological functions but also for the immune system, endocrine network, and central nervous system.

Medicinal research and meta-data analysis over the last few decades have shown a significant potential for both THC and cannabidiol (CBD) to exert palliative effects. People suffering from many forms of advanced stages of cancers undergo chemotherapy-induced nausea and vomiting followed by severe and chronic neuropathic pain and weight loss.

THC and CBD exhibit effective analgesic, anxiolytic, and appetite-stimulating effect on patients suffering from cancer. Drugs currently available in the market to treat such chemotherapy-induced cancer-related ailments are Sativex (GW Pharmaceutical), Dronabinol (Unimed Pharmaceuticals), and Nabilone (Valeant Pharmaceuticals).

Apart from exerting palliative effects, THC also shows promising role in the treatment of cancer growth, neurodegenerative diseases (multiple sclerosis and Alzheimer’s disease), and alcohol addiction and hence should be exploited for potential benefits.

The current review discusses the nature and role of CB receptors, specific applications of cannabinoids, and major studies that have assessed the role of cannabinoids in cancer management.

Specific targeting of cannabinoid receptors can be used to manage severe side effects during chemotherapy, palliative care, and overall cancer management. Furthermore, research evidences on cannabinoids have suggested tumor inhibiting and suppressing properties which warrant reconsidering legality of the substance.

Studies on CB1 and CB2 receptors, in case of cancers, have demonstrated the psychoactive constituents of cannabinoids to be potent against tumor growth.

Interestingly, studies have also shown that activation of CB1 and CB2 cannabinoid receptors by their respective synthetic agonists tends to limit human cancer cell growth, suggesting the role of the endocannabinoid system as a novel target for treatment of cancers.

Further explorations are required to exploit cannabinoids for an effective cancer management.”

http://www.cancerjournal.net/preprintarticle.asp?id=263538

“Could Cannabis Kill Cancer Cells? A New Study Looks Promising”  https://www.portlandmercury.com/blogtown/2019/08/15/26977361/could-cannabis-kill-cancer-cells-a-new-study-looks-promising

“Study Reviews How Marijuana Compounds Inhibit Tumor Growth And Kill Cancer Cells” https://www.marijuanamoment.net/study-reviews-how-marijuana-compounds-inhibit-tumor-growth-and-kill-cancer-cells/