Cannabinoids for skin diseases and hair regrowth

“The use of cannabis for skin diseases and hair regrowth is at the preliminary stage.

Legalization: Many countries have approved cannabis for medical use; however, four countries Canada, Uruguay, South Africa, and Georgia have legalized it for both medical and recreational purposes.

The endocannabinoid system: The endocannabinoid system may maintain skin homeostasis; two notable endocannabinoids include 2-Arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA).

Routes of administration and pharmacokinetics: Topical cannabinoids can avoid the first-pass metabolism and reduce respiratory side effects; however, the high hydrophobicity of cannabinoids may hinder percutaneous absorption.

Skin disorders and hair growth: Human clinical studies suggest that cannabinoids may be used in eczema, acne, pruritus, and systemic sclerosis treatment. Cannabidiol (CBD) may enhance hair growth via multiple mechanisms.

Safety: Topical cannabis may cause mild side effects such as pruritus, burning, erythema, and stinging; they are relatively safer than inhalation and oral cannabis. Cannabis use may be associated with allergic symptoms and reduced immune response to live vaccination.

Cannabinoids in practice: Despite growing interest, dermatologists should be cautious prescribing cannabinoids due to insufficient clinical data on both efficacy and safety.”

https://pubmed.ncbi.nlm.nih.gov/34363728/

https://onlinelibrary.wiley.com/doi/10.1111/jocd.14352

 

The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation

molecules-logo“Significant growth of interest in cannabis (Cannabis sativa L.), especially its natural anti-inflammatory and antioxidative properties, has been observed recently. This narrative review aimed to present the state of the art of research concerning the anti-inflammatory activity of all classes of cannabinoids published in the last five years. Multimodal properties of cannabinoids include their involvement in immunological processes, anti-inflammatory, and antioxidative effects. Cannabinoids and non-cannabinoid compounds of cannabis proved their anti-inflammatory effects in numerous animal models. The research in humans is missing, and the results are unconvincing. Although preclinical evidence suggests cannabinoids are of value in treating chronic inflammatory diseases, the clinical evidence is scarce, and further well-designed clinical trials are essential to determine the prospects for using cannabinoids in inflammatory conditions.”

https://pubmed.ncbi.nlm.nih.gov/34361704/

https://www.mdpi.com/1420-3049/26/15/4551

Anti-depressant effects of ethanol extract from Cannabis sativa (hemp) seed in chlorpromazine-induced Drosophila melanogaster depression model

Publication Cover“Context: Depression is a severe mental illness caused by a deficiency of dopamine and serotonin. Cannabis sativa L. (Cannabaceae) has long been used to treat pain, nausea, and depression.

Objective: This study investigates the anti-depressant effects of C. sativa (hemp) seed ethanol extract (HE) in chlorpromazine (CPZ)-induced Drosophila melanogaster depression model.

Results: The behavioural patterns of individual flies were significantly reduced with 0.1% CPZ treatment. In contrast, combination treatment of 1.5% HE and 0.1% CPZ significantly increased subjective daytime activity (p < 0.001) and behavioural factors (p < 0.001). These results correlate with increased transcript levels of dopamine (p < 0.001) and serotonin (p < 0.05) receptors and concentration of dopamine (p < 0.05), levodopa (p < 0.001), 5-HTP (p < 0.05), and serotonin (p < 0.001) compared to those in the control group.

Discussion and conclusions: Collectively, HE administration alleviates depression-like symptoms by modulating the circadian rhythm-related behaviours, transcript levels of neurotransmitter receptors, and neurotransmitter levels in the CPZ-induced Drosophila model. However, additional research is needed to investigate the role of HE administration in behavioural patterns, reduction of the neurotransmitter, and signalling pathways of depression in a vertebrate model system.”

https://pubmed.ncbi.nlm.nih.gov/34362287/

“CPZ induces depression-like symptoms, such as changes in behavioural patterns, transcription levels of neurotransmitter receptors, and depression-related neurotransmitter levels in the D. melanogaster depression model. However, administration of HE restores the circadian rhythms, improves locomotor activity, and significantly increases transcription levels of dopamine and serotonin receptors in the depression-induced flies. Based on these findings, we can conclude that HE alleviates depression-like symptoms by increasing the levels of serotonin and dopamine receptors and dopamine, L-DOPA, 5-HTP, and serotonin levels in the brain.”

https://www.tandfonline.com/doi/full/10.1080/13880209.2021.1949356

A pilot safety, tolerability and pharmacokinetic study of an oro-buccal administered cannabidiol-dominant anti-inflammatory formulation in healthy individuals: a randomized placebo-controlled single-blinded study

SpringerLink“Background: The cannabis plant presents a complex biochemical unit of over 500 constituents of which 70 or more molecules have been classified as cannabinoids binding to cannabinoid receptors. The study aimed to investigate the safety, tolerability, and preliminary pharmacokinetics of a nanoparticle CBD formulation.

Results: The study met the primary outcomes of safety, tolerability, and preliminary pharmacokinetics of a standardized CBD-dominant anti-inflammatory extract for oro-buccal administration. Bioavailability of a 6 mg and 18 mg dose of CBD (median IQR) was 0.87 and 8.9 ng h mL-1, respectively. The maximum concentration of CBD for the low and high doses administered once per day occurred at 60 min for both concentrations. The median half-life of the 6 mg and 18 mg CBD dose was 1.23 and 5.45 h, respectively. The apparent clearance of CBD was 115 and 34 L min-1 for a 6 mg and 18 mg dose, respectively.

Conclusion: The oro-buccal nanoparticle formulation achieved plasma concentrations that were largely comparable to other commercial and investigated formulations relative to the concentrations administered. Moreover, there were no reports of adverse effects associated with unfavorable inflammatory sequalae.”

https://pubmed.ncbi.nlm.nih.gov/34357480/

https://link.springer.com/article/10.1007%2Fs10787-021-00859-y

The Effects of Cannabis sativa L. Extract on Oxidative Stress Markers In Vivo

life-logo“In recent decades, a lot of attention has been paid to Cannabis sativa L. due to its useful applications, including in fibers, oil, food for humans and animals, and therapeutics.

The present study aimed to determine antioxidant activity of cannabinoids in Cannabis sativa L. in vivo, evaluating the possible antioxidative effect of Cannabis sativa L. extract (CE) on malondialdehyde (MDA) and glutathione (GSH) concentrations as well as on catalase (CAT) activity in BALB/c mice.

The findings in vivo indicate that Cannabis sativa L. is a good source of natural antioxidants and can be used in the management of oxidative stress.”

https://pubmed.ncbi.nlm.nih.gov/34357019/

https://www.mdpi.com/2075-1729/11/7/647

Association Between Smoking Cannabis and Quitting Cigarettes in a Large American Cancer Society Cohort

Cancer Epidemiology, Biomarkers & Prevention“Background: Cannabis use is increasing, including among smokers, an at-risk population for cancer. Research is equivocal on whether using cannabis inhibits quitting cigarettes. The current longitudinal study investigated associations between smoking cannabis and subsequently quitting cigarettes.

Results: Adjusted cigarette quitting rates at follow-up did not differ significantly by baseline cannabis smoking status [never 36.2%, 95% confidence interval (CI), 34.5%-37.8%; former 34.1%, CI, 31.4%-37.0%; recent 33.6%, CI, 30.1%-37.3%], nor by frequency of cannabis smoking (low 31.4%, CI, 25.6%-37.3%; moderate 36.7%, CI, 30.7%-42.3%; high 34.4%, CI, 28.3%-40.2%) among recent baseline cannabis smokers. In cross-sectional analyses conducted at follow-up the proportion of cigarette smokers intending to quit smoking cigarettes in the next 30 days did not differ by cannabis smoking status (p=0.83).

Conclusions: Results do not support the hypothesis that cannabis smoking inhibits quitting cigarette smoking among adults.”

https://pubmed.ncbi.nlm.nih.gov/34348959/

“Results do not support the hypothesis that cannabis smoking inhibits quitting cigarette smoking among adults.” https://cebp.aacrjournals.org/content/early/2021/08/04/1055-9965.EPI-20-1810

Risk and benefit of cannabis prescription for chronic non-cancer pain

Taylor and Francis Online“Objectives: We investigated whether cannabis usage was associated with reduced opioid usage, and the rates of opioid and cannabis use disorders among chronic pain patients who had been prescribed medical cannabis.

Results: Of the 100 participants aged 18-70 years (compliance 67% (aged >40) and 33% (aged ≤ 40y)), 76 ever used opioids. Of them, 93% decreased or stopped opioids following cannabis initiation. Ten patients (10%), 17.4% of the ≤40 y age group, met the criteria for cannabis use disorder. Compared to those who did not meet the criteria, their lifetime depression was higher (80% vs. 43.2%, respectively, P=.042), and they were less educated (12.2 ± 0.6y vs. 13.5 ± 2.1y, p = 0.05).

Conclusions: Cannabis usage was associated with reduced opioid usage. The prevalence of cannabis use disorder was high among the younger participants who also had a lower study compliance rate, suggesting the higher actual prevalence of cannabis use disorder. While medical cannabis may help reduce opioid use in chronic non-cancer pain patients, younger age, depression, and other risk factors should be carefully evaluated before cannabis is prescribed.”

https://pubmed.ncbi.nlm.nih.gov/34338621/

“Cannabis usage was associated with reduced opioid usage.”

https://www.tandfonline.com/doi/abs/10.1080/10550887.2021.1956673?journalCode=wjad20

A Novel Mechanism of Cannabidiol in Suppressing Hepatocellular Carcinoma by Inducing GSDME Dependent Pyroptosis

Frontiers in Cell and Developmental Biology - Institut de Myologie“Cannabidiol (CBD), a phytochemical derived from Cannabis sativa L., has been demonstrated to exhibit promising anti-tumor properties in multiple cancer types. However, the effects of CBD on hepatocellular carcinoma (HCC) cells remain unknown. We have shown that CBD effectively suppresses HCC cell growth in vivo and in vitro, and induced HCC cell pyroptosis in a caspase-3/GSDME-dependent manner. We further demonstrated that accumulation of integrative stress response (ISR) and mitochondrial stress may contribute to the initiation of pyroptotic signaling by CBD. Simultaneously, CBD can repress aerobic glycolysis through modulation of the ATF4-IGFBP1-Akt axis, due to the depletion of ATP and crucial intermediate metabolites. Collectively, these observations indicate that CBD could be considered as a potential compound for HCC therapy.”

https://pubmed.ncbi.nlm.nih.gov/34350183/

“Hepatocellular carcinoma (HCC) is an extremely malignant cancer, accounting for almost 95% of primary liver cancer cases. Cannabidiol (CBD), a phytochemical derived from Cannabis sativa L., has been shown to have anti-tumor activity and to be a potential compound for tumor therapy. Previous studies have demonstrated that CBD treatment could effectively induce cell apoptosis in tumor cells. In this study, we have shown that CBD can effectively suppress HCC cell growth both in vitro and in vivo, which was similar to the anti-tumor activity of CBD observed in other cancer types. In summary, a mechanistic model of CBD anti-tumor activity in HCC cell pyroptosis and growth was demonstrated. All the observations described herein reveal a novel mechanism of the anti-tumor activity of CBD in HCC cells, suggesting that CBD could be considered as a promising compound for HCC therapy.”

https://www.frontiersin.org/articles/10.3389/fcell.2021.697832/full

Combination therapy with cannabidiol and chemotherapeutics in canine urothelial carcinoma cells

“Background: Canine urothelial carcinoma is the most common form of canine bladder cancer. Treatment with chemotherapy has variable response rates leading to most dogs succumbing to their disease within a year. Cannabidiol is an emerging treatment within the field of oncology. In reported in vivo studies, cannabidiol has induced apoptosis, reduced cell migration, and acted as a chemotherapy sensitizer in various human tumor types. The aim of this study was to characterize the effects of cannabidiol on canine urothelial carcinoma cell viability and apoptosis as both a single agent and in combination with chemotherapy in vitro.

Results: Cannabidiol reduced cell viability and induced apoptosis in canine urothelial cells as determined by crystal violet viability assay and annexin V/propidium iodide flow cytometry. Furthermore, combinations of cannabidiol with mitoxantrone and vinblastine chemotherapy yielded significantly reduced cell viability and increased apoptosis compared to single agent treatment alone. The drug interactions were deemed synergistic based on combination index calculations. Conversely, the combination of cannabidiol and carboplatin did not result in decreased cell viability and increased apoptosis compared to single agent treatment. Combination index calculations suggested an antagonistic interaction between these drugs. Finally, the combination of the non-steroidal anti-inflammatory drug piroxicam with cannabidiol did not significantly affect cell viability, although, some cell lines demonstrated decreased cell viability when mitoxantrone was combined with piroxicam.

Conclusions: Cannabidiol showed promising results as a single agent or in combination with mitoxantrone and vinblastine for treatment of canine urothelial carcinoma cells. Further studies are justified to investigate whether these results are translatable in vivo.”

https://pubmed.ncbi.nlm.nih.gov/34352013/

“Cannabidiol (CBD) is a phytocannabinoid derived from the Cannabis sativa plant with well-documented analgesic, anti-inflammatory, and anxiolytic effects. This study determined that CBD treatment reduced viability and induced cell death in canine urothelial carcinoma cells in vitro. Taken together, these results suggest that CBD may be a potential treatment for use in combination with chemotherapeutic agents to improve canine UC carcinoma response rates and survival.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255591

 

The Pharmacological Effects of Plant-Derived versus Synthetic Cannabidiol in Human Cell Lines

/WebMaterial/ShowPic/1344608“Introduction: Cannabidiol (CBD) can be isolated from Cannabis sativa L. or synthetically produced. The aim of this study was to compare the in vitro effects of purified natural and synthetic CBD to establish any pharmacological differences or superiority between sources. 

Conclusion: Our results suggest that there is no pharmacological difference in vitro in the antiproliferative, anti-inflammatory, or permeability effects of purified natural versus synthetic CBD. The purity and reliability of CBD samples, as well as the ultimate pharmaceutical preparation, should all be considered above the starting source of CBD in the development of new CBD medicines.

This study demonstrates for the first time that the anticancer, neuroprotective, and intestinal barrier protective properties of purified CBD are similar regardless of the source from which CBD is derived. From a pharmacological perspective, where a molecular target is implicated (i.e., 5HT1A in stroke and CB1 in gut permeability), the effects of CBD were similar. This suggests that any beneficial effects that could be achieved in a clinical setting for purified CBD are likely to be similar at a pharmacodynamic level.”

https://www.karger.com/Article/FullText/517120

“Study finds no in-vitro pharmacological difference in the antiproliferative, anti-inflammatory, or permeability effects of purified natural versus synthetic CBD”

https://www.streetinsider.com/Globe+Newswire/Artelo+Biosciences+Announces+Publication+of+Study+Results+Comparing+the+Pharmacological+Effects+of+Plant-Derived+Versus+Synthetic+Cannabidiol+in+Human+Cell+Lines/18767297.html