“Mammalian ω3- and ω6-PUFAs are synthesized from essential fatty acids (EFAs) or supplied by the diet. PUFAs are constitutive elements of membrane-architecture and precursors of lipid signaling molecules. EFAs and long chain PUFAs are precursors in the synthesis of endocannabinoid-ligands of the Gi/o-protein coupled cannabinoid receptors 1 and 2 in the endocannabinoid-system, which critically regulates energy homeostasis, as metabolic signaling system in hypothalamic neuronal circuits, and behavioral parameters. We utilized the auxotrophic fatty acid desaturase 2 deficient (fads2-/-) mouse, deficient in long chain PUFA-synthesis, to follow the age dependent dynamics of the PUFA pattern in the CNS-phospholipidome in unbiased dietary studies of three cohorts on sustained long chain PUFA-free, ω6-arachidonic and ω3-docosahexaenoic acid supplemented diets and their impact on the precursor pool of CB1 ligands. We discovered the transformation of eicosa-all cis-5,11,14-trienoic acid, uncommon in mammalian lipidomes, into two novel endocannabinoids, 20:35,11,14-ethanolamide and 2-20:35,11,14-glycerol, acting as ligands of CB1 in HEK293-cells. Labeling experiments excluded a Δ8-desaturase activity and proved the position-specificity of FADS2. The fads2 -/- mutant might serve as an unbiased model in vivo in the development of novel CB1-agonists and antagonists.”
Tag Archives: cannabinoid
Pharmacokinetics of oral and intravenous cannabidiol and its antidepressant-like effects in chronic mild stress mouse model.
“Cannabidiol (CBD) exhibits significant efficacy in mental and inflammatory diseases. Several studies have recently reported on the rapid antidepressant-like effects of CBD, suggesting that CBD is a potential anti-depressant or anti-stress drug. However, CBD is mainly administered orally or by inhalation with poor bioavailability, resulting in high costs. We aim to explore the efficacy of long-term periodic administration of CBD in chronic mild stress (CMS) via two routes and its pharmacokinetics. We treated ICR mice with CBD administered orally and intravenously and then determined the kinetic constants. A single bolus intravenous injection of CBD resulted in a half-life of 3.9 h, mean residence time of 3.3 h, and oral bioavailability of about 8.6%. The antidepressant-like effects of periodically administered CBD on the chronic mild stress mouse model are evaluated. Results demonstrated that such treatment at a high dose of 100 mg/kg CBD (p.o.) or a low dose of 10 mg/kg CBD (i.v.), elicited significant antidepressant-like behavioral effects in forced swim test, following increased mRNA expression of brain-derived neurotrophic factor (BDNF) and synaptophysin in the prefrontal cortex and the hippocampus. Our findings are expected to provide a reference for the development of intravenous antidepressant formulations of CBD.”
https://www.ncbi.nlm.nih.gov/pubmed/31173966
https://www.sciencedirect.com/science/article/pii/S1382668919300687?via%3Dihub
Medical Marijuana in the Pediatric Population With Epilepsy—What You Should Know
“This article discusses the controversial but promising topic of medical marijuana (MM) use in the pediatric population with epilepsy. Included is the importance of MM throughout history, the pharmacodynamics and pharmacokinetics, and a literature review that provides anecdotal evidence of the positive effect MM has on children suffering from seizures. From this literature review, dosage for treatment and management is provided. Also discussed is the recent FDA-approved pharmaceutical grade CBD product, Epidiolex, for treatment of two pediatric-onset seizure syndromes, Lennox-Gastaut and Dravet. Clinical implications regarding adverse side effects of MM use are also discussed. The aim of this article is to arm providers with contemporary knowledge on the risks and benefits of MM use in the pediatric population with epilepsy, which may boost their skills and confidence in educating and advocating for children with seizures. This novel, ever-changing medication is in the forefront of history and the news, making this topic especially important for review.”
l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway.
“The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury.”
https://www.ncbi.nlm.nih.gov/pubmed/31149342
https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1002/prp2.487
The pharmacological reduction of hippocampal neurogenesis attenuates the protective effects of cannabidiol on cocaine voluntary intake.
“The administration of cannabidiol has shown promising evidence in the treatment of some neuropsychiatric disorders, including cocaine addiction. However, little information is available as to the mechanisms by which cannabidiol reduces drug use and compulsive seeking.
We investigated the role of adult hippocampal neurogenesis in reducing cocaine voluntary intake produced by repeated cannabidiol treatment in mice.
Cannabidiol (20 mg/kg) reduced cocaine self-administration behaviour acquisition and total cocaine intake and enhanced adult hippocampal neurogenesis.
The present study confirms that adult hippocampal neurogenesis is one of the mechanisms by which cannabidiol lowers cocaine reinforcement and demonstrates the functional implication of adult hippocampal neurogenesis in cocaine voluntary consumption in mice.
Such findings highlight the possible use of cannabidiol for developing new pharmacotherapies to manage cocaine use disorders.”
Should Oncologists Recommend Cannabis?
“Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.”
https://www.ncbi.nlm.nih.gov/pubmed/31161270
https://link.springer.com/article/10.1007%2Fs11864-019-0659-9
Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?
“Described during the late 1980s and 1990s, cannabinoid receptors (CB1R and CB2R) are G-protein-coupled receptors (GPCRs) activated by endogenous ligands and cannabinoid drug compounds, such as Δ9-THC. Whereas CB1R has a role in the regulation of neurotransmission in different brain regions and mainly mediates the psychoactive effects of cannabinoids, CB2R is found predominantly in the cells and tissues of the immune system and mediates anti-inflammatory and immunomodulatory processes. Studies have demonstrated that CB1R and CB2R can affect the activation of T cells, B cells, monocytes, and microglial cells, inhibiting proinflammatory cytokine expression and upregulating proresolution mediators. Thus, in this review, we summarize the mechanisms by which CBRs interact with the autoimmune environment and the potential to suppress the development and activation of autoreactive cells. Finally, we highlight how the modulation of CB1R and CB2R is advantageous in the treatment of autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes mellitus (T1DM) and rheumatoid arthritis (RA).”
https://www.ncbi.nlm.nih.gov/pubmed/31158514
https://www.sciencedirect.com/science/article/pii/S1359644618304847?via%3Dihub
Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment.
“When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism’s energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose).
Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic.
Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders.”
https://www.ncbi.nlm.nih.gov/pubmed/31156558
https://www.frontiersin.org/articles/10.3389/fendo.2019.00311/full
A selective CB2 agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice.
“Rheumatoid arthritis (RA) is a chronic, inflammatory, synovitis-dominated systemic disease with unknown etiology. RA is characterized by the involvement of multiple affected joints, symmetry, and invasive arthritis of the limbs, which can lead to joint deformity, cartilage destruction, and loss of function. Cannabinoid receptor 2 (CB2) has potent immunomodulatory and anti-inflammatory effects and is predominantly expressed in non-neuronal tissues. In the current study, the role of CB2 in the process of inflammatory bone erosion in RA was examined. The selective agonist or high-affinity ligand of CB2 (4-quinolone-3-carboxamides CB2 agonist, 4Q3C CB2agonist, 4Q3C) significantly reduced the severity of arthritis, decreased histopathological findings, and markedly reduced bone erosion in collagen-induced arthritis (CIA) mice. In addition, 4Q3C prevented an increase in the nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio and inhibited the formation of osteoclasts in CIA mice. Furthermore, the expression of tumor necrosis factor-alpha, interleukin-1β, cyclooxygenase-2, and inducible nitric oxide synthase was lower in 4Q3C-treated CIA mice than in control CIA mice. Micro-computed tomography corroborated the finding that 4Q3C reduced joint destruction. These data clearly indicate that the CB2-selective agonist, 4Q3C, may have anti-inflammatory and anti-osteoclastogenesis effects in RA and may be considered to be a novel treatment for RA.”
https://www.ncbi.nlm.nih.gov/pubmed/31154267
https://www.sciencedirect.com/science/article/pii/S0753332219307528?via%3Dihub
CB2 Cannabinoid receptor agonist ameliorates novel object recognition but not spatial memory in transgenic APP/PS1 mice.
“The cannabinoid receptor 2 (CB2R) has been considered as a potential therapeutic target to ameliorate the neuroinflammation and cognitive impairments of Alzheimer’s disease (AD). However, there has been little research on the diverse roles of CB2R in regulating different forms of cognitive abilities and underlying neuroinflammatory mechanisms. Thus, the focus of the present study was to investigate the effects of CB2R activation on cognitive abilities, activation and phenotype conversion of microglia, and dendrite complexity.
Results showed that CB2R activation normalized the cortex-dependent novel object recognition memory deficit in a novel object recognition test (P < 0.05) and CB2R activation was ineffective for hippocampus-dependent spatial cognitive dysfunction in the Morris water maze test (P > 0.05). Moreover, activation of CB2R did not affect the formation of plaque in either the cortex or hippocampus (P > 0.05). Interestingly, in the cortex but not in the hippocampus of APP/PS1 mice, there was decreased immunofluorescence intensity of Iba1, M1 to M2 microglial phenotype conversion, and restored dendritic complexity after a long treatment period of CB2R agonist (All P < 0.05).
Our results demonstrated that CB2R activation exerts a beneficial role in novel object recognition ability concomitant with region-specific regulation in microglia-mediated neuroinflammation and dendritic complexity in AD-model mice.”
https://www.ncbi.nlm.nih.gov/pubmed/31150731
https://www.sciencedirect.com/science/article/pii/S0304394019303581?via%3Dihub