“With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.”
Tag Archives: cannabinoid
Cost-effectiveness of cannabinoids for pediatric drug-resistant epilepsy: protocol for a systematic review of economic evaluations.
“Drug-resistant epilepsy negatively impacts the quality of life and is associated with increased morbidity and mortality and high costs to the healthcare system. Cannabis-based treatments may be effective in reducing seizures in this population, but whether they are cost-effective is unclear. In this systematic review, we will search for cost-effectiveness analyses involving the treatment of pediatric drug-resistant epilepsy with cannabis-based products to inform decision-making by public healthcare payers about reimbursement of such products. We will also search for cost-effectiveness analyses of other pharmacologic treatments for pediatric drug-resistant epilepsy, as well as estimates of healthcare resource use, costs, and utilities, for use in a subsequent cost-utility analysis to address this decision problem.
METHODS:
We will search the published and gray literature for economic evaluations of cannabis-based products and other pharmacologic treatments for pediatric drug-resistant epilepsy, as well as resource utilization and utility studies. Two independent reviewers will screen the title and abstract of each identified record and the full-text version of any study deemed potentially relevant. Study and population characteristics, the incremental cost-effectiveness ratio (ICER), as well as total costs and benefits, will be extracted, and quality will be assessed by use of the Drummond and CHEERS checklists; context-specific issues will also be considered. From model-based cost-utility and cost-effectiveness analyses, we will extract and summarize the model structure, including health states, time horizon, and cycle length. From resource utilization studies, we will extract data about the frequency of resource use (e.g., neurology visits, emergency department visits, admissions to hospital). From utility studies, we will extract the utility for each health state, the source of the preferences (e.g., child, parent, patient, general public), and the method of elicitation.
DISCUSSION:
Drug-resistant epilepsy in children is associated with important costs to the healthcare system, and decision-makers require high-quality evidence on which to base reimbursement decisions. The results of this review will be useful to both decision-makers considering the decision problem of whether to reimburse cannabis-based products through public formularies and to analysts conducting studies in this area.”
https://www.ncbi.nlm.nih.gov/pubmed/30917869
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-0990-z
Cannabinoid interventions for PTSD: Where to next?
“Cannabinoids are a promising method for pharmacological treatment of post-traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. We evaluate the strengths and weaknesses of each of these different approaches, including recent challenges presented to favourable options such as fatty acid amide hydrolase (FAAH) inhibitors. This article makes the strengths and challenges of different potential cannabinoid treatments accessible to psychological researchers interested in cannabinoid therapeutics and aims to aid selection of appropriate tools for future clinical trials.”
https://www.ncbi.nlm.nih.gov/pubmed/30946942
https://www.sciencedirect.com/science/article/pii/S027858461930034X?via%3Dihub
Don’t Fear the Reefer-Evidence Mounts for Plant-Based Cannabidiol as Treatment for Epilepsy.
“Cannabidiol has been used for treatment-resistant seizures in patients with severe early-onset epilepsy. We investigated the efficacy and safety of cannabidiol added to a regimen of conventional antiepileptic medication to treat drop seizures in patients with the Lennox-Gastaut syndrome, a severe developmental epileptic encephalopathy.
METHODS:
In this double-blind, placebo-controlled trial conducted at 30 clinical centers, we randomly assigned patients with the Lennox-Gastaut syndrome (age range, 2-55 years) who had had 2 or more drop seizures per week during a 28-day baseline period to receive cannabidiol oral solution at a dose of 20 mg/kg of body weight (20-mg cannabidiol group) or 10 mg/kg (10-mg cannabidiolgroup) or matching placebo, administered in 2 equally divided doses daily for 14 weeks. The primary outcome was the percentage change from baseline in the frequency of drop seizures (average per 28 days) during the treatment period.
RESULTS:
A total of 225 patients were enrolled; 76 patients were assigned to the 20-mg cannabidiol group, 73 to the 10-mg cannabidiol group, and 76 to the placebo group. During the 28-day baseline period, the median number of drop seizures was 85 in all trial groups combined. The median percentage reduction from baseline in drop seizure frequency during the treatment period was 41.9% in the 20-mg cannabidiol group, 37.2% in the 10-mg cannabidiol group, and 17.2% in the placebo group ( P = .005 for the 20-mg cannabidiol group vs placebo group, and P = .002 for the 10-mg cannabidiol group vs placebo group). The most common adverse events among the patients in the cannabidiol groups were somnolence, decreased appetite, and diarrhea; these events occurred more frequently in the higher dose group. Six patients in the 20-mg cannabidiol group and 1 patient in the 10-mg cannabidiol group discontinued the trial medication because of adverse events and were withdrawn from the trial. Fourteen patients who received cannabidiol (9%) had elevated liver aminotransferase concentrations.
CONCLUSIONS:
Among children and adults with the Lennox-Gastaut syndrome, the addition of cannabidiol at a dose of 10 or 20 mg/kg/d to a conventional antiepileptic regimen resulted in greater reductions in the frequency of drop seizures than placebo. Adverse events with cannabidiol included elevated liver aminotransferase concentrations. (Funded by GW Pharmaceuticals; GWPCARE3 ClinicalTrials.gov number, NCT02224560.) Long-Term Safety and Treatment Effects of Cannabidiol in Children and Adults With Treatment-Resistant Epilepsies: Expanded Access Program Results Szaflarski JP, Bebin EM, Comi AM, et al; CBD EAP Study Group. Epilepsia. 2018;59(8):1540-1548.
OBJECTIVE:
Since 2014, cannabidiol (CBD) has been administered to patients with treatment-resistant epilepsies (TREs) in an ongoing expanded access program (EAP). We report interim results on the safety and efficacy of CBD in EAP patients treated through December 2016.
METHODS:
Twenty-five US-based EAP sites enrolling patients with TRE taking stable doses of antiepileptic drugs (AEDs) at baseline were included. During the 4-week baseline period, parents/caregivers kept diaries of all countable seizure types. Patients received oral CBD starting at 2 to 10 mg/kg/d, titrated to a maximum dose of 25 to 50 mg/kg/d. Patient visits were every 2 to 4 weeks through 16 weeks and every 2 to 12 weeks thereafter. Efficacy end points included the percentage change from baseline in median monthly convulsive and total seizure frequency and percentage of patients with ≥50%, ≥75%, and 100% reductions in seizures versus baseline. Data were analyzed descriptively for the efficacy analysis set and using the last-observation-carried-forward method to account for missing data. Adverse events (AEs) were documented at each visit.
RESULTS:
Of 607 patients in the safety data set, 146 (24%) withdrew; the most common reasons were lack of efficacy (89 [15%]) and AEs (32 [5%]). Mean age was 13 years (range, 0.4-62). Median number of concomitant AEDs was 3 (range, 0-10). Median CBD dose was 25 mg/kg/d; median treatment duration was 48 weeks. Add-on CBD reduced median monthly convulsive seizures by 51% and total seizures by 48% at 12 weeks; reductions were similar through 96 weeks. Proportion of patients with ≥50%, ≥75%, and 100% reductions in convulsive seizures were 52%, 31%, and 11%, respectively, at 12 weeks, with similar rates through 96 weeks. Cannabidiol was generally well tolerated; most common AEs were diarrhea (29%) and somnolence (22%).
SIGNIFICANCE:
Results from this ongoing EAP support previous observational and clinical trial data, showing that add-on CBD may be an efficacious long-term treatment option for TRE. Randomized, Dose-Ranging Safety Trial of Cannabidiol in Dravet Syndrome Devinsky O, Patel AD, Thiele EA, et al; GWPCARE1 Part A Study Group. Neurology. 2018;90(14):e1204-e1211.
OBJECTIVE:
To evaluate the safety and preliminary pharmacokinetics of a pharmaceutical formulation of purified cannabidiol (CBD) in children with Dravet syndrome.
METHODS:
Patients aged 4 to 10 years were randomized 4:1 to CBD (5, 10, or 20 mg/kg/d) or placebo taken twice daily. The double-blind trial comprised 4-week baseline, 3-week treatment (including titration), 10-day taper, and 4-week follow-up periods. Completers could continue in an open-label extension. Multiple pharmacokinetic blood samples were taken on the first day of dosing and at end of treatment for measurement of CBD, its metabolites 6-OH-CBD, 7-OH-CBD, and 7-COOH-CBD, and antiepileptic drugs (AEDs; clobazam and metabolite N-desmethylclobazam [N-CLB], valproate, levetiracetam, topiramate, and stiripentol). Safety assessments were clinical laboratory tests, physical examinations, vital signs, electrocardiograms, adverse events (AEs), seizure frequency, and suicidality.
RESULTS:
Thirty-four patients were randomized (10, 8, and 9 to the 5, 10, and 20 mg/kg/d CBD groups and 7 to placebo); 32 (94%) completed treatment. Exposure to CBD and its metabolites was dose proportional (AUC0-t). Cannabidiol did not affect concomitant AED levels, apart from an increase in N-CLB (except in patients taking stiripentol). The most common AEs on CBD were pyrexia, somnolence, decreased appetite, sedation, vomiting, ataxia, and abnormal behavior. Six patients taking CBD and valproate developed elevated transaminases; none met criteria for drug-induced liver injury and all recovered. No other clinically relevant safety signals were observed.
CONCLUSIONS:
Exposure to CBD and its metabolites increased proportionally with dose. An interaction with N-CLB was observed, likely related to CBD inhibition of cytochrome P450 subtype 2C19. Cannabidiol resulted in more AEs than placebo but was generally well tolerated.
CLASSIFICATION OF EVIDENCE:
This study provides class I evidence that for children with Dravet syndrome, CBD resulted in more AEs than placebo but was generally well tolerated.”
Enhancing effects of acute exposure to cannabis smoke on working memory performance
“Prior preclinical studies show that acute cannabinoid injections impair cognition.
Here, effects of cannabis smoke on working memory were tested in rats.
Cannabis smoke improved working memory accuracy.
Placebo smoke did not affect working memory accuracy.
Enhancing effects are likely due to THC dose and/or route of administration.” https://www.sciencedirect.com/science/article/pii/S1074742718302776?via%3Dihub
“Numerous preclinical studies show that acute cannabinoid administration impairs cognitive performance. Almost all of this research has employed cannabinoid injections, however, whereas smoking is the preferred route of cannabis administration in humans. The goal of these experiments was to systematically determine how acute exposure to cannabis smoke affects working memory performance in a rat model.
Exposure to cannabis smoke had no effect on male rats’ performance, but surprisingly, enhanced working memory accuracy in females, which tended to perform less accurately than males under baseline conditions. In addition, cannabis smoke enhanced working memory accuracy in a subgroup of male rats that performed comparably to the worst-performing females. Exposure to placebo smoke had no effect on performance, suggesting that the cannabinoid content of cannabis smoke was critical for its effects on working memory.” https://www.ncbi.nlm.nih.gov/pubmed/30521850
Treatment of Fragile X Syndrome with Cannabidiol: A Case Series Study and Brief Review of the Literature.
“Fragile X syndrome (FXS) is an X-linked dominant disorder caused by a mutation in the fragile X mental retardation 1 gene.
Cannabidiol (CBD) is an exogenous phytocannabinoid with therapeutic potential for individuals with anxiety, poor sleep, and cognitive deficits, as well as populations with endocannabinoid deficiencies, such as those who suffer from FXS.
The objective of this study was to provide a brief narrative review of recent literature on endocannabinoids and FXS and to present a case series describing three patients with FXS who were treated with oral CBD-enriched (CBD+) solutions.
We review recent animal and human studies of endocannabinoids in FXS and present the cases of one child and two adults with FXS who were treated with various oral botanical CBD+ solutions delivering doses of 32.0 to 63.9 mg daily. Multiple experimental and clinical models of FXS combine to highlight the therapeutic potential of CBD for management of FXS.
All three patients described in the case series exhibited functional benefit following the use of oral CBD+ solutions, including noticeable reductions in social avoidance and anxiety, as well as improvements in sleep, feeding, motor coordination, language skills, anxiety, and sensory processing. Two of the described patients exhibited a reemergence of a number of FXS symptoms following cessation of CBD+ treatment (e.g., anxiety), which then improved again after reintroduction of CBD+ treatment. Findings highlight the importance of exploring the therapeutic potential of CBD within the context of rigorous clinical trials.”
Cannabidiol as adjunctive treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome.
“Epilepsy is one of the most common chronic disorders of the brain affecting around 70 million people worldwide. Treatment is mainly symptomatic, and most patients achieve long-term seizure control. Up to one-third of the affected subjects, however, are resistant to anticonvulsant therapy.
Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) are severe, refractory epilepsy syndromes with onset in early childhood. Currently available interventions fail to control seizures in most cases, and there remains the need to identify new treatments.
Cannabidiol (CBD) is the first in a new class of antiepileptic drugs. It is a major chemical of the cannabis plant, which has antiseizure properties in absence of psychoactive effects.
This article provides a critical review of the pharmacology of CBD and the most recent clinical studies that evaluated its efficacy and safety as adjunctive treatment of seizures associated with LGS and DS.”
Astroglial monoacylglycerol lipase controls mutant huntingtin-induced damage of striatal neurons.
“Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington’s disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that they express CB1 receptors, degrade endocannabinoids, and modulate endocannabinergic transmission. However, the possible role of the astroglial endocannabinoidsystem in controlling MSN integrity remains unknown. Here, we show that JZL-184, a selective inhibitor of monoacylglycerol lipase (MGL), the key enzyme that deactivates the endocannabinoid 2-arachidonoylglycerol, prevented the mutant huntingtin-induced up-regulation of the pro-inflammatory cytokine tumor necrosis factor-α in primary mouse striatal astrocytes via CB1 receptors. To study the role of astroglial MGL in vivo, we injected stereotactically into the mouse dorsal striatum viral vectors that encode mutant or normal huntingtin under the control of the glial fibrillary acidic protein promoter. We observed that, in wild-type mice, pharmacological blockade of MGL with JZL-184 (8 mg/kg/day, i.p.) conferred neuroprotection against mutant huntingtin-induced striatal damage, as evidenced by the prevention of MSN loss, astrogliosis, and motor coordination impairment. We next found that conditional mutant mice bearing a genetic deletion of MGL selectively in astroglial cells (MGLfloxed/floxed;GFAP-Cre/+ mice) were resistant to mutant huntingtin-induced MSN loss, astrogliosis, and motor coordination impairment. Taken together, these data support that astroglial MGL controls the availability of a 2-arachidonoylglycerol pool that ensues protection of MSNs in the mouse striatum in vivo, thus providing a potential druggable target for reducing striatal neurodegeneration.”
https://www.ncbi.nlm.nih.gov/pubmed/30914306
https://www.sciencedirect.com/science/article/pii/S0028390819301066?via%3Dihub
Protective effects of specific cannabinoid receptor 2 agonist GW405833 on concanavalin A-induced acute liver injury in mice.
“Cannabinoid receptor 2 (CB2R) is highly expressed in immune cells and plays an important role in regulating immune responses. In the current study, we investigated the effects of GW405833 (GW), a specific CB2R agonist, on acute liver injury induced by concanavalin A (Con A).
In animal experiments, acute liver injury was induced in mice by injection of Con A (20 mg/kg, i.v.). The mice were treated with GW (20 mg/kg, i.p., 30 min after Con A injection) or GW plus the selective CB2R antagonist AM630 (2 mg/kg, i.p., 15 min after Con A injection).
We found that Con A caused severe acute liver injury evidenced by significantly increased serum aminotransferase levels, massive hepatocyte apoptosis, and necrosis, as well as lymphocyte infiltration in liver tissues. Treatment with GW significantly ameliorated Con A-induced pathological injury in liver tissue, decreased serum aminotransferase levels, and decreased hepatocyte apoptosis.
Our results suggest that GW protects against Con A-induced acute liver injury in mice by inhibiting Jurkat T-cell proliferation through the CB2Rs.”
Update on Antiepileptic Drugs 2019.
“This article is an update from the article on antiepileptic drug (AED) therapy published in the last Continuum issue on epilepsy and is intended to cover the vast majority of agents currently available to the neurologist in the management of patients with epilepsy. Treatment of epilepsy starts with AED monotherapy. Knowledge of the spectrum of efficacy, clinical pharmacology, and modes of use for individual AEDs is essential for optimal treatment for epilepsy. This article addresses AEDs individually, focusing on key pharmacokinetic characteristics, indications, and modes of use.
RECENT FINDINGS:
Since the previous version of this article was published, three new AEDs, brivaracetam, cannabidiol, and stiripentol, have been approved by the US Food and Drug Administration (FDA), and ezogabine was removed from the market because of decreased use as a result of bluish skin pigmentation and concern over potential retinal toxicity.Older AEDs are effective but have tolerability and pharmacokinetic disadvantages. Several newer AEDs have undergone comparative trials demonstrating efficacy equal to and tolerability at least equal to or better than older AEDs as first-line therapy. The list includes lamotrigine, oxcarbazepine, levetiracetam, topiramate, zonisamide, and lacosamide. Pregabalin was found to be less effective than lamotrigine. Lacosamide, pregabalin, and eslicarbazepine have undergone successful trials of conversion to monotherapy. Other newer AEDs with a variety of mechanisms of action are suitable for adjunctive therapy. Most recently, the FDA adopted a policy that a drug’s efficacy as adjunctive therapy in adults can be extrapolated to efficacy in monotherapy. In addition, efficacy in adults can be extrapolated for efficacy in children 4 years of age and older. Both extrapolations require data demonstrating that an AED has equivalent pharmacokinetics between its original approved use and its extrapolated use. In addition, the safety of the drug in pediatric patients has to be demonstrated in clinical studies that can be open label. Rational AED combinations should avoid AEDs with unfavorable pharmacokinetic interactions or pharmacodynamic interactions related to mechanism of action.
SUMMARY:
Knowledge of AED pharmacokinetics, efficacy, and tolerability profiles facilitates the choice of appropriate AED therapy for patients with epilepsy.”
https://www.ncbi.nlm.nih.gov/pubmed/30921021
https://insights.ovid.com/crossref?an=00132979-201904000-00014