The Cannabis Spread Throughout the Continents and Its Therapeutic Use in History

“Historical relevance: Cannabis sativa L. (C. sativa) is a plant whose use as a therapeutic agent shares its origins with the first Far East’s human societies. Cannabis has been used not only for recreational purposes, but as a food to obtain textile fibers, to produce hemp paper, to treat many physical and mental disorders.

This review aims to provide a complete assessment of the deep knowledge of the cannabis psychoactive effects and medicinal properties in the course of history covering i.) the empirical use of the seeds and the inflorescences to treat many physical ailments by the ancient Oriental physicians ii.) the current use of cannabis as a therapeutic agent after the discovery of its key psychoactive constituent and the human endogenous endocannabinoid system.

Results and conclusion: Through a detailed analysis of the available resources about the origins of C. sativa we found that its use by ancient civilizations as a source of food and textile fibers dates back over 10,000 years, while its therapeutic applications have been improved over the centuries, from the ancient East medicine of the 2nd and 1st millennium B.C. to the more recent introduction in the Western world after the 1st century A.D. In the 20th and 21th centuries, Cannabis and its derivatives have been considered as a menace and banned throughout the world, but nowadays they are still the most widely consumed illicit drugs all over the world. Its legalization in some jurisdictions has been accompanied by new lines of research to investigate its possible applications for medical and therapeutic purposes.”

https://pubmed.ncbi.nlm.nih.gov/32433013/?from_term=cannabinoid&from_sort=date&from_size=200&from_pos=6

http://www.eurekaselect.com/182145/article

The Therapeutic Effectiveness of Full Spectrum Hemp Oil Using a Chronic Neuropathic Pain Model

life-logo“Few models exist that can control for placebo and expectancy effects commonly observed in clinical trials measuring ‘Cannabis’ pharmacodynamics. We used the Foramen Rotundum Inflammatory Constriction Trigeminal Infraorbital Nerve injury (FRICT-ION) model to measure the effect of “full-spectrum” whole plant extracted hemp oil on chronic neuropathic pain sensitivity in mice.

Results: Mechanical allodynia was alleviated within 1 h (d = 2.50, p < 0.001) with a peak reversal effect at 4 h (d = 7.21, p < 0.001) and remained significant throughout the 6 h observation window. There was no threshold change on contralateral whisker pad after hemp oil administration, demonstrating the localization of anesthetic response to affected areas.

Conclusion: Future research should focus on how whole plant extracted hemp oil affects multi-sensory and cognitive-attentional systems that process pain.

The present study shows for the first time that common, commercially available, and easily reproducible full-spectrum hemp oil induces significant anti-allodynic effects with a bell-shaped pain sensitivity effect peeking between 2 and 4 h and lasting over 6 h. The study provides evidence that phytochemical extracts of the Cannabis plant, even with relatively low levels of THC, can significantly improve mechanical pressure pain in animals with established chronic neuropathic hypersensitivity.”

https://www.mdpi.com/2075-1729/10/5/69/htm

“Legal Cannabis hemp oil effectively treats chronic neuropathic pain: study”   https://medicalxpress.com/news/2020-05-legal-cannabis-hemp-oil-effectively.html

Investigation of cannabidiol gastro retentive tablets based on regional absorption of cannabinoids in rats.

European Journal of Pharmaceutics and Biopharmaceutics“The cannabis plant has been widely researched for many therapeutic indications and found to be effective in many chronic conditions such as epilepsy, neuropathic or chronic pain and more. However, biased opinion against compounds of the plant, regulatory as well as compounding challenges have led to very few approved medicinal products. Those formulations which are approved are dosed several times a day, creating an unmet need for controlled release (CR) formulations of cannabinoids. Conventional CR formulations rely on prolonged absorption including the colon. The purpose of this work is to investigate regional absorption of major cannabinoids THC and CBD from the colon and develop a suitable CR formulation. As hypothesized by researchers, THC and CBD have poor absorption from the colon compared to small intestine, suggesting that these compounds have a narrow absorption window. The suggested formulation examined in-vitro was a floating gastro retentive tablet based on egg albumin matrix, gas generating agents and surfactants. In-vivo investigation of CBD containing formulation in the freely moving rat model proved a prolonged absorption phase with a substantial increase in bioavailability compared to CBD solution. The findings of this paper answer a crucial question regarding potential application of CR dosage forms for cannabinoids and shed light on the regional intestinal absorption of these compounds. Ultimately, these results cement the way for future development of cannabinoid gastro retentive dosage forms.”

https://www.ncbi.nlm.nih.gov/pubmed/32422168

https://www.sciencedirect.com/science/article/abs/pii/S0939641120301375?via%3Dihub

Cannabis Constituents and Acetylcholinesterase Interaction: Molecular Docking, In Vitro Studies and Association with CNR1 rs806368 and ACHE rs17228602.

biomolecules-logo“The study documented here was aimed to find the molecular interactions of some of the cannabinoid constituents of cannabis with acetylcholinesterase (AChE). Molecular docking and LogP determination were performed to predict the AChE inhibitory effect and lipophilicity. AChE enzyme activity was measured in the blood of cannabis addicted human subjects. Further, genetic predisposition to cannabis addiction was investigated by association analysis of cannabinoid receptor 1 (CNR1) single nucleotide polymorphism (SNP) rs806368 and ACHE rs17228602 using restriction fragment length polymorphism (RFLP) method. All the understudied cannabis constituents showed promising binding affinities with AChE and are lipophilic in nature. The AChE activity was observed to be indifferent in cannabis addicted and non-addicted healthy controls. There was no significant association with CNR1 SNP rs806368 and ACHE rs17228602. The study concludes that in silico prediction for individual biomolecules of cannabis is different from in vivo physiological action in human subjects when all are present together. However, for a deeper mechanistic insight into these interactions and association, multi-population studies are suggested. Further studies to explore the inhibitory potential of different cannabis constituents for intended AChE inhibitor-based drug are warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/32414087

https://www.mdpi.com/2218-273X/10/5/758

“Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities.”  https://www.ncbi.nlm.nih.gov/pubmed/26585089

Cannabis Phytomolecule ‘Entourage’: From Domestication to Medical Use.

 

Trends in Plant Science: Special issue: Specifi...“Cannabis has been used as a medicine for millennia.

Crude extracts of cannabis inflorescence contain numerous phytomolecules, including phytocannabinoids, terpenes, and flavonoids. Combinations of phytomolecules have been recently established as superior to the use of single molecules in medical treatment owing to the ‘entourage effect’.

Two types of entourage effects are defined: ‘intra-entourage’, resulting from interactions among phytocannabinoids or terpenes, and ‘inter-entourage’, attributed to interactions between phytocannabinoids and terpenes. It is suggested that the phytomolecule assemblages found in cannabis chemovars today derive from selective breeding during ancient cultivation.

We propose that the current cannabis chemotaxonomy should be redefined according to chemical content and medicinal activity. In parallel, combinations of phytomolecules that exhibit entourage activity should be explored further for future drug development.”

https://www.ncbi.nlm.nih.gov/pubmed/32417167

“Cannabis has been used for millennia by humanity for social, ritual, and medical purposes. Humans bred and selected for cannabis strains based on their needs.”

https://www.cell.com/trends/plant-science/pdf/S1360-1385(20)30122-9.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138520301229%3Fshowall%3Dtrue

Biological potential of varinic-, minor-, and acidic phytocannabinoids.

Pharmacological Research“While natural Δ9-tetrahidrocannabinol (Δ9THC), cannabidiol (CBD), and their therapeutic potential have been extensively researched, some cannabinoids have not been widely investigated.

The present article compiles data from the literature that highlights research on and the therapeutic possibilities of lesser known phytocannabinoids, which we have divided into varinic, acidic, and “minor” (i.e., cannabinoids that are not present in high quantities in common varieties of Cannabis sativa L).

A growing interest in these compounds, which are enriched in some cannabis varieties, has already resulted in enough preclinical information to show that they are promising therapeutic agents for a variety of diseases.

Each phytocannabinoid has a “preferential” mechanism of action, and often target the cannabinoid receptors CB1 and/or CB2. The recent resolution of the structure of cannabinoid receptors demonstrates the atypical nature of cannabinoid binding, and that different binding modes depend on the agonist or partial agonist/inverse agonist, which allows for differential signaling, even acting on the same cannabinoid receptor. In addition, other players and multiple signaling pathways may be targeted/engaged by phytocannabinoids, thereby expanding the mechanistic possibilities for therapeutic use.”

https://www.ncbi.nlm.nih.gov/pubmed/32416215

https://www.sciencedirect.com/science/article/abs/pii/S1043661820311099?via%3Dihub

Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy.

International Journal of Medical Sciences“The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival.

Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.”

https://www.ncbi.nlm.nih.gov/pubmed/32410828

“Id1 is a promising target of anti-tumor treatment as many compounds exert anti-tumor properties by mediating Id1-related pathways.”

https://www.medsci.org/v17p0995.htm

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells leading to the down-regulation of tumor aggressiveness. Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types of solid tumors investigated.”

https://mct.aacrjournals.org/content/6/11/2921

Targeting Cannabinoid Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Associated Neurocognitive Disorder.

 SpringerLink“HIV infection affects an estimated 38 million people. Approximately 50% of HIV patients exhibit neurocognitive dysfunction termed HIV-Associated Neurocognitive Disorder (HAND). HAND is a consequence of chronic low-level neuroinflammation due to HIV entry into the brain. Initially, monocytes become activated in circulation and traffic to the brain. Monocytes, when activated, become susceptible to infection by HIV and can then carry the virus across the blood brain barrier. Once in the brain, activated monocytes secrete chemokines, which recruit virus-specific CD8+ T cells into the brain to further promote neuroinflammation. HAND is closely linked to systemic inflammation driven, in part, by HIV but is also due to persistent translocation of microorganisms across the GI tract. Persistent anti-viral responses in the GI tract compromise microbial barrier integrity. Indeed, HIV patients can exhibit remarkably high levels of activated (CD16+) monocytes in circulation.

Recent studies, including our own, show that HIV patients using medical marijuana exhibit lower levels of circulating CD16+ monocytes than non-cannabis using HIV patients. Cannabis is a known immune modulator, including anti-inflammatory properties, mediated, in part, by ∆9-tetrahydrocannabinol (THC), as well as less characterized minor cannabinoids, such as cannabidiol (CBD), terpenes and presumably other cannabis constituents. The immune modulating activity of THC is largely mediated through cannabinoid receptors (CB) 1 and 2, with CB1 also responsible for the psychotropic properties of cannabis.

Here we discuss the anti-inflammatory properties of cannabinoids in the context of HIV and propose CB2 as a putative therapeutic target for the treatment of neuroinflammation. Graphical Abstract HIV-associated neurocognitive disorder is a systemic inflammatory disease leading to activation of plasmacytoid dendritic cells, monocytes and T cells. Monocyte and CD8 T cell migration across the BBB and interaction with astrocytes promotes neurotoxic inflammatory mediators release. CB2 ligands are proposed as therapeutics capable of suppressing systemic and localized inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/32409991

https://link.springer.com/article/10.1007%2Fs11481-020-09918-7

Economic Evaluation of Cannabinoid Oil for Dravet Syndrome: A Cost-Utility Analysis.

SpringerLink “Cannabinoid oils are being increasingly used to treat Dravet syndrome, yet the long-term costs and outcomes of this approach are unknown. Thus, we examined the cost effectiveness of cannabinoid oil as an adjunctive treatment (added to clobazam and valproate), compared with adjunctive stiripentol or with clobazam and valproate alone, for the treatment of Dravet syndrome in children.

METHODS:

We performed a probabilistic cost-utility analysis from the perspective of the Canadian public health care system, comparing cannabinoid oil and stiripentol (both on a background of clobazam and valproate) with clobazam and valproate alone. Costs and quality-adjusted life-years (QALYs) were estimated using a Markov model that followed a cohort of children aged from 5 to 18 years through model states related to seizure frequency. Model inputs were obtained from the literature. The cost effectiveness of adjunctive cannabinoid oil, adjunctive stiripentol, and clobazam/valproate alone was assessed through sequential analysis. The influence of perspective and other assumptions were explored in scenario analyses. All costs are expressed in 2019 Canadian dollars, and costs and QALYs were discounted at a rate of 1.5% per year.

RESULTS:

The incremental cost per QALY gained with the use of adjunctive cannabinoid oil, from the health care system perspective, was $32,399 compared with clobazam and valproate. Stiripentol was dominated by cannabinoid oil, producing fewer QALYs at higher costs. At a willingness-to-pay threshold of $50,000, cannabinoid oil was the optimal treatment in 76% of replications. From a societal perspective, cannabinoid oil dominated stiripentol and clobazam/valproate. The interpretation of the results was insensitive to model and input assumptions.

CONCLUSION:

Compared with clobazam/valproate, adjunctive cannabinoid oil may be a cost-effective treatment for Dravet syndrome, if a decision maker is willing to pay at least $32,399 for each QALY gained. The opportunity costs of continuing to fund stiripentol, but not cannabinoid oil, should be considered.”

https://www.ncbi.nlm.nih.gov/pubmed/32406036

https://link.springer.com/article/10.1007%2Fs40273-020-00923-5

State Medical Cannabis Laws Associated With Reduction in Opioid Prescriptions by Orthopaedic Surgeons in Medicare Part D Cohort.

Current Issue Cover Image“Opioid prescriptions and abuse remain a significant national concern.

Cannabinoids offer a potentially attractive nonopioid analgesic option for orthopaedic patients, and 32 US states have passed medical cannabis laws (MCLs), legalizing patient access to cannabinoids.

We examine the association between implementation of state cannabis laws and prescribing patterns for opioids by orthopaedic surgeons in Medicare Part D patients between 2013 and 2017.

RESULTS:

State MCLs were associated with a statistically significant reduction in aggregate opioid prescribing of 144,000 daily doses (19.7% reduction) annually (95% confidence interval [CI], -0.535 to -0.024 million; P < 0.01). States with MCLs allowing access to in-state dispensaries had a statistically significant reduction in total opioid prescriptions of 96,000 daily doses (13.1%) annually (95% CI, -0.165 to -0.026 million; P < 0.01). Specifically, MCLs were associated with a statistically significant reduction of 72,000 daily doses of hydrocodone annually (95% CI, -0.164 to -0.019 million; P < 0.01). No significant association between recreational marijuana legalization and opioid prescribing was found.

CONCLUSION:

Orthopaedic surgeons are among the highest prescribers of opioids, highlighting the importance of providing nonopioid analgesic alternatives in efforts to reduce opioid use in the patient cohort. This study is the first to examine the association between implementation of state cannabis laws and prescribing patterns for opioids by orthopaedic surgeons in Medicare Part D patients.”

https://www.ncbi.nlm.nih.gov/pubmed/32404683

https://journals.lww.com/jaaos/Abstract/9000/State_Medical_Cannabis_Laws_Associated_With.99112.aspx