“Modern day research, in an attempt to determine the potential therapeutic and adverse effects of illicit substances, is a growing field, but one that faces many regulatory challenges. Due to the potential abuse of illicit substances such as Cannabis, 3,4-methylenedioxymethamphetamine (MDMA), lysergic acid diethylamide (LSD) and psilocybin, regulations have been conceived with the intent of preventing harm and addiction. However, these regulations have also become a major barrier for the scientific community as they suffocate attempts of the scientists to acquire illicit substances for research purposes. Therefore, it is imperative to modify the current regulations of drug scheduling, leading to a reclassification of illicit substances that would allow for extensive testing in research settings. This reclassification effort could advance the potentially life-saving research of illicit substances.”
Tag Archives: Cannabinoids
Totality of the Evidence Suggests Prenatal Cannabis Exposure Does Not Lead to Cognitive Impairments: A Systematic and Critical Review
“Despite limited data demonstrating pronounced negative effects of prenatal cannabis exposure, popular opinion and public policies still reflect the belief that cannabis is fetotoxic.
This article provides a critical review of results from longitudinal studies examining the impact of prenatal cannabis exposure on multiple domains of cognitive functioning in individuals aged 0 to 22 years.
The current evidence does not suggest that prenatal cannabis exposure alone is associated with clinically significant cognitive functioning impairments.
The current review of the literature found that there are relatively few cognitive alterations noted in offspring exposed to cannabis prenatally.
In general, prenatal cannabis exposure was associated with few effects, negative or positive.”
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00816/full
Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson’s disease.
“The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson’s disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects.
In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before.
In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.”
https://www.ncbi.nlm.nih.gov/pubmed/32387338
“Δ9-THCV exhibited anti-dyskinetic properties in L-DOPA-treated Pitx3ak mutant mice. It delayed the onset of dyskinetic signs and reduced their neurochemical changes. It also reduced their intensity when given once dyskinesia was already present. This potential adds to other properties of Δ9-THCV as antiparkinsonian therapy.
In summary, our data support the anti-dyskinetic potential of Δ9-THCV to ameliorate adverse effects caused by L-DOPA, in particular delaying the occurrence and attenuating the magnitude of dyskinetic signs. This adds to its promising symptom-alleviating and neuroprotective properties described previously. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for PD patients.”
https://www.sciencedirect.com/science/article/pii/S0969996120301674?via%3Dihub
Anti-inflammatory effects of lenabasum, a cannabinoid receptor type 2 agonist, on macrophages from cystic fibrosis.
“Lenabasum is an oral synthetic cannabinoid receptor type 2 agonist previously shown to reduce the production of key airway pro-inflammatory cytokines known to play a role in cystic fibrosis (CF). In a double-blinded, randomized, placebo-control phase 2 study, lenabasum lowered the rate of pulmonary exacerbation among patients with CF. The present study was undertaken to investigate anti-inflammatory mechanisms of lenabasum exhibits in CF macrophages.
RESULTS:
Lenabasum had no effect on differentiation, polarization and function of macrophages from healthy individuals. However, in CF macrophages lenabasum downregulated macrophage polarization into the pro-inflammatory M1 phenotype and secretion of the pro-inflammatory cytokines IL-8 and TNF-α in a dose-dependent manner. An improvement in phagocytic activity was also observed following lenabasum treatment. Although lenabasum did not restore the impaired polarization of anti-inflammatory M2 macrophage, it reduced the levels of IL-13 and enhanced the endocytic function of CF MDMs. The effects of lenabasum on MDMs with CFTR inhibited by C-172 were not as obvious.
CONCLUSION:
In CF macrophages lenabasum modulates macrophage polarization and function in vitro in a way that would reduce inflammation in vivo. Further studies are warranted to determine the link between activating the CBR2 receptor and CFTR.”
https://www.ncbi.nlm.nih.gov/pubmed/32387042
https://www.cysticfibrosisjournal.com/article/S1569-1993(20)30094-1/pdf
Activation of CB1R Promotes Lipopolysaccharide-Induced IL-10 Secretion by Monocytic Myeloid-Derived Suppressive Cells and Reduces Acute Inflammation and Organ Injury.
“Cannabis sativa and its principal components, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol, are increasingly being used to treat a variety of medical problems, including inflammatory conditions.
Although studies suggest that the endocannabinoid system has immunomodulatory properties, there remains a paucity of information on the effects of cannabinoids on immunity and on outcomes of infection and injury.
We investigated the effects and mechanism(s) of action of cannabinoid receptor agonists, including Δ9-THC, on inflammation and organ injury in endotoxemic mice.
Administration of Δ9-THC caused a dramatic early upregulation of plasma IL-10 levels, reduced plasma IL-6 and CCL-2 levels, led to better clinical status, and attenuated organ injury in endotoxemic mice. The anti-inflammatory effects of Δ9-THC in endotoxemic mice were reversed by a cannabinoid receptor type 1 (CB1R) inverse agonist (SR141716), and by clodronate-induced myeloid-cell depletion, but not by genetic invalidation or blockade of other putative Δ9-THC receptors, including cannabinoid receptor type 2, TRPV1, GPR18, GPR55, and GPR119. Although Δ9-THC administration reduced the activation of several spleen immune cell subsets, the anti-inflammatory effects of Δ9-THC were preserved in splenectomized endotoxemic mice. Finally, using IL-10-GFP reporter mice, we showed that blood monocytic myeloid-derived suppressive cells mediate the Δ9-THC-induced early rise in circulating IL-10.
These results indicate that Δ9-THC potently induces IL-10, while reducing proinflammatory cytokines, chemokines, and related organ injury in endotoxemic mice via the activation of CB1R. These data have implications for acute and chronic conditions that are driven by dysregulated inflammation, such as sepsis, and raise the possibility that CB1R-signaling may constitute a novel target for inflammatory disorders.”
https://www.ncbi.nlm.nih.gov/pubmed/32385136
https://www.jimmunol.org/content/early/2020/05/07/jimmunol.2000213
Full-Spectrum Cannabis Extract Microdepots Support Controlled Release of Multiple Phytocannabinoids for Extended Therapeutic Effect.
“The therapeutic effect of the Cannabis plant largely depends on the presence and specific ratio of a spectrum of phytocannabinoids. While prescription of medicinal Cannabis for various conditions constantly grows, its consumption is mostly limited to oral or respiratory pathways, impeding its duration of action, bioavailability and efficacy. Herein, a long-acting formulation in the form of melt-printed polymeric microdepots for full-spectrum cannabidiol(CBD)-rich extract administration is described. When injected subcutaneously in mice, the microdepots facilitate sustained release of the encapsulated extract over a two-week period. The prolonged delivery results in elevated serum levels of multiple, major and minor, phytocannabinoids for over 14 days, compared to Cannabis extract injection. A direct analysis of the microdepots retrieved from the injection site gives rise to an empirical model for the release kinetics of the phytocannabinoids as a function of their physical traits. As a proof of concept, we compare the long-term efficacy of a single administration of the microdepots to a single administration of Cannabis extract in pentylenetetrazol-induced convulsions model. One week following administration, the microdepots reduce the incidence of tonic-clonic seizures by 40%, increase the survival rate by 50%, and the latency to first tonic-clonic seizures by 170%. These results suggest that a long-term full-spectrum Cannabis delivery system may provide new form of Cannabis administration and treatments.”
Inhibitory Effect of Cannabidiol on the Activation of NLRP3 Inflammasome Is Associated with Its Modulation of the P2X7 Receptor in Human Monocytes.
“Cannabidiol (CBD), a phytocannabinoid, has been reported to have anti-inflammatory effects associated with NLRP3 inflammasome activation, but its mechanism of anti-inflammasome action remains unclear.
Herein, we report CBD’s effect on NLRP3 inflammasome activation and its modulation of P2X7, an inflammasome activation-related receptor, in human THP-1 monocytes.
Overall, the observed CBD suppressive effect on NLRP3 inflammasome activation in THP-1 monocytes was associated with decreased potassium efflux, as well as in silico prediction of P2X7 receptor binding.
CBD inhibitory effects on the NLRP3 inflammasome may contribute to the overall anti-inflammatory effects reported for this phytocannabinoid.”
The impact of naturalistic cannabis use on self-reported opioid withdrawal.
“Four states have legalized medical cannabis for the purpose of treating opioid use disorder. It is unclear whether cannabinoids improve or exacerbate opioid withdrawal. A more thorough examination of cannabis and its impact on specific symptoms of opioid withdrawal is warranted.
METHOD:
Two hundred individuals recruited through Amazon Mechanical Turk with past month opioid and cannabis use and experience of opioid withdrawal completed the survey. Participants indicated which opioid withdrawal symptoms improved or worsened with cannabis use and indicated the severity of their opioid withdrawal on days with and without cannabis.
RESULTS:
62.5% (n = 125) of 200 participants had used cannabis to treat withdrawal. Participants most frequently indicated that cannabis improved: anxiety, tremors, and trouble sleeping. A minority of participants (6.0%, n = 12) indicated cannabis worsened opioid withdrawal, specifically symptoms of yawning, teary eyes, and runny nose. Across all symptoms, more participants indicated that symptoms improved with cannabis compared to those that indicated symptoms worsened with cannabis. Women reported greater relief from withdrawal with cannabis use than men.
DISCUSSION:
These results show that cannabis may improve opioid withdrawal symptoms and that the size of the effect is clinically meaningful. It is important to note that symptoms are exacerbated with cannabis in only a minority of individuals. Prospectively designed studies examining the impact of cannabis and cannabinoids on opioid withdrawal are warranted.”
https://www.ncbi.nlm.nih.gov/pubmed/32359667
“Cannabis alleviates self-reported opioid withdrawal symptoms.”
https://www.journalofsubstanceabusetreatment.com/article/S0740-5472(19)30564-1/pdf
SARS-CoV2 induced respiratory distress: Can Cannabinoids be added to anti-viral therapies to reduce lung inflammation?
“Coronavirus disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome coronoavirus-2 (SARS-CoV2) has emerged as a global pandemic, which was first reported in Wuhan, China. Recent reports have suggested that acute infection is associated with a cytokine superstorm, which contributes to the symptoms of fever, cough, muscle pain and in severe cases bilateral interstitial pneumonia characterized by ground glass opacity and focal chest infiltrates that can be visualized on computerized tomography scans. Currently, there are no effective antiviral drugs or vaccines against SARS-CoV2. In the recent issue of BBI, Zhang et al. thoroughly summarized the current status of potential therapeutic strategies for COVID-19. One of them, anti-IL6 receptor (Tocilizumab) antibody, resulted in clearance of lung consolidation and recovery in 90% of the 21 treated patients. Although promising, it has also produced adverse effects like pancreatitis and hypertriglyceridemia, which make it imperative to explore effective alternative anti-inflammatory strategies. Here, we intend to highlight the potential effects of cannabinoids, in particular, the non-psychotropic cannabidiol (CBD), that has shown beneficial anti-inflammatory effects in pre-clinical models of various chronic inflammatory diseases and is FDA approved for seizure reduction in children with intractable epilepsy.
Like Δ9-tetrahydrocannabinol (Δ9-THC), the most well-studied cannabinoid, CBD decreased lung inflammation in a murine model of acute lung injury potentially through the inhibition of proinflammatory cytokine production by immune cells and suppressing exuberant immune responses. CBD can inhibit the production of proinflammatory cytokines like interleukin (IL)-2, IL-6, IL-1α and β, interferon gamma, inducible protein-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α that have been associated with SARS-CoV2 induced multi-organ pathology and mortality. In a murine model of chronic asthma, CBD reduced proinflammatory cytokine production, airway inflammation and fibrosis. Moreover, CBD can effectively inhibit the JAK-STAT pathway including the production and action of type I interferons without leading to addiction, alterations in heart rate or blood pressure and adverse effects on the gastrointestinal tract and cognition. In simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs), we reported THC mediated attenuation of IFN stimulated gene expression in the intestine. Similar to CBD, chronic THC administration blocked inflammation induced fibrosis in lymph nodes of chronically SIV-infected RMs. Unlike THC, CBD has a high margin of safety and is well tolerated pharmacologically even after treatments of up to 1500 mg/day for two weeks in both animals and humans, which suggests its feasibility to reduce SARS-CoV2 induced lung inflammation/pathology and disease severity.
The many uncertainties associated with the COVID-19 pandemic such as status of the economy, employment and loss of connection can fuel depression, fear and anxiety. CBD has shown promise as an alternative therapy for the clinical management of anxiety disorders. Based on its anxiolytic and anti-depressant properties, it has been suggested that CBD could be used to improve the mental and somatic health of patients suffering from anxiety and emotional stress after recovering from Ebola disease. Like Ebola, patients recovering from COVID-19 may experience various psychological and social stressors that may be triggered by residual chronic inflammation and autoimmune reactions. Therefore, randomized clinical trials to test the efficacy of CBD on alleviating anxiety and fear associated with COVID-19 infection and its consequences on people’s physical, social and psychological well-being may be beneficial in the future. Additionally, severely ill COVID-19 patients exhibited neurological symptoms like cerebrovascular disease, headache and disturbed consciousness (Reviewed in. Brain edema, neuronal degeneration and presence of SARS-CoV2 in the cerebrospinal fluid (CSF) were confirmed at autopsy. Therefore, longitudinal CSF sampling using non-human primate (NHP) studies may help clarify whether and when SARS-CoV2 invades the brain, and if this happens, does it result in neuroinflammation and more importantly, whether cannabinoids can modulate these events.
Being a negative allosteric modulator of the cannabinoid receptor-1, CBD can counter the psychotropic effects of THC when co-administered with THC. Although Remdesivir reduced the mortality rate of seriously ill COVID-19 patients needing invasive ventilation, similar studies in rhesus macaques revealed minimal subpleural inflammatory cellular infiltrates in the lungs of clinically recovered Remdesivir treated RMs at necropsy. This suggests persistence of inflammation and may partly explain the 20–30% reduction in lung function in COVID-19 patients after recovery, which if left unresolved may lead to pulmonary fibrosis. Collectively, these findings support the investigation of cannabinoids as a plausible option to be added as an adjunct to Remdesivir or any new antivirals on SARS-CoV2 induced lung inflammation.”
https://www.ncbi.nlm.nih.gov/pubmed/32360437
https://www.sciencedirect.com/science/article/pii/S0889159120307078?via%3Dihub
“Cannabis Indica speeds up Recovery from Coronavirus” https://www.researchgate.net/publication/339746853_Cannabis_Indica_speeds_up_Recovery_from_Coronavirus
Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals?
“Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes.
Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol.
The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions.
Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions.
Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract.
With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.”