Cannabinoids and Opioids in the Treatment of Inflammatory Bowel Diseases.

Image result for clinical and translational gastroenterology“In traditional medicine, Cannabis sativa has been prescribed for a variety of diseases. Today, the plant is largely known for its recreational purpose, but it may find a way back to what it was originally known for: a herbal remedy. Most of the plant’s ingredients, such as Δ-tetrahydrocannabinol, cannabidiol, cannabigerol, and others, have demonstrated beneficial effects in preclinical models of intestinal inflammation. Endogenous cannabinoids (endocannabinoids) have shown a regulatory role in inflammation and mucosal permeability of the gastrointestinal tract where they likely interact with the gut microbiome. Anecdotal reports suggest that in humans, Cannabis exerts antinociceptive, anti-inflammatory, and antidiarrheal properties. Despite these reports, strong evidence on beneficial effects of Cannabis in human gastrointestinal diseases is lacking. Clinical trials with Cannabis in patients suffering from inflammatory bowel disease (IBD) have shown improvement in quality of life but failed to provide evidence for a reduction of inflammation markers. Within the endogenous opioid system, mu opioid receptors may be involved in anti-inflammation of the gut. Opioids are frequently used to treat abdominal pain in IBD; however, heavy opioid use in IBD is associated with opioid dependency and higher mortality. This review highlights latest advances in the potential treatment of IBD using Cannabis/cannabinoids or opioids.”

https://www.ncbi.nlm.nih.gov/pubmed/31899693

https://journals.lww.com/ctg/Abstract/latest/Cannabinoids_and_Opioids_in_the_Treatment_of.99898.aspx

[Cannabidiol in cancer treatment].

Image result for springer link journals“Cannabis was used for cancer patients as early as about 2500 years ago.

Experimental studies demonstrated tumor-inhibiting activities of various cannabinoids more than 40 years ago.

In view of the status of tetrahydrocannabinol (THC) as a regulated substance, non-psychotomimetic cannabidiol (CBD) is of particular importance.

RESULTS:

Preclinical studies, particularly recent ones, including numerous animal models of tumors, unanimously suggest the therapeutic efficacy of CBD. In isolated combination studies, synergistic effects were generally observed. In addition, CBD may potentially play a role in the palliative care of patients, especially concerning symptoms such as pain, insomnia, anxiety, and depression. Further human studies are warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/31897700

https://link.springer.com/article/10.1007%2Fs00482-019-00438-9

Effect of combined doses of Δ9-tetrahydrocannabinol and cannabidiol or tetrahydrocannabinolic acid and cannabidiolic acid on acute nausea in male Sprague-Dawley rats.

 “This study evaluated the potential of combined cannabis constituents to reduce nausea.

CONCLUSION:

Combinations of very low doses of CBD + THC or CBDA + THCA robustly reduce LiCl-induced conditioned gaping. Clinical trials are necessary to determine the efficacy of using single or combined cannabinoids as adjunct treatments with existing anti-emetic regimens to manage chemotherapy-induced nausea.”

https://www.ncbi.nlm.nih.gov/pubmed/31897571

https://link.springer.com/article/10.1007%2Fs00213-019-05428-4

Cannabinoids as an Emerging Therapy for Posttraumatic Stress Disorder and Substance Use Disorders.

Related image “Posttraumatic Stress Disorder (PTSD) is a leading psychiatric disorder that mainly affects military and veteran populations but can occur in anyone affected by trauma. PTSD treatment remains difficult for physicians because most patients with PTSD do not respond to current pharmacological treatment. Psychotherapy is effective, but time consuming and expensive. Substance use disorder is often concurrent with PTSD, which leads to a significant challenge for PTSD treatment.

Cannabis has recently received widespread attention for the potential to help many patient populations. Cannabis has been reported as a coping tool for patients with PTSD and preliminary legalization data indicate Cannabis use may reduce the use of more harmful drugs, such as opioids. Rigorous clinical studies of Cannabis could establish whether Cannabis-based medicines can be integrated into treatment regimens for both PTSD and substance use disorder patients.”

https://www.ncbi.nlm.nih.gov/pubmed/31895187

https://insights.ovid.com/crossref?an=00004691-202001000-00005

The Endocannabinoid System and Synthetic Cannabinoids in Preclinical Models of Seizure and Epilepsy.

 Related image“Cannabinoids are compounds that are structurally and/or functionally related to the primary psychoactive constituent of Cannabis sativa, [INCREMENT]-tetrahydrocannabinol (THC). Cannabinoids can be divided into three broad categories: endogenous cannabinoids, plant-derived cannabinoids, and synthetic cannabinoids (SCs).

Recently, there has been an unprecedented surge of interest into the pharmacological and medicinal properties of cannabinoids for the treatment of epilepsies. This surge has been stimulated by an ongoing shift in societal opinions about cannabinoid-based medicines and evidence that cannabidiol, a nonintoxicating plant cannabinoid, has demonstrable anticonvulsant activity in children with treatment-refractory epilepsy.

The major receptors of the endogenous cannabinoid system (ECS)-the type 1 and 2 cannabinoid receptors (CB1R, CB2R)-have critical roles in the modulation of neurotransmitter release and inflammation, respectively; so, it is not surprising therefore that the ECS is being considered as a target for the treatment of epilepsy.

SCs were developed as potential new drug candidates and tool compounds for studying the ECS. Beyond the plant cannabinoids, an extensive research effort is underway to determine whether SCs that directly target CB1R, CB2R, or the enzymes that breakdown endogenous cannabinoids have anticonvulsant effects in preclinical rodent models of epilepsy and seizure.

This research demonstrates that many SCs do reduce seizure severity in rodent models and may have both positive and negative pharmacodynamic and pharmacokinetic interactions with clinically used antiepilepsy drugs. Here, we provide a comprehensive review of the preclinical evidence for and against SC modulation of seizure and discuss the important questions that need to be addressed in future studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31895186

https://insights.ovid.com/crossref?an=00004691-202001000-00004

Cannabis for Pediatric Epilepsy.

 Related image“Epilepsy is a chronic disease characterized by recurrent unprovoked seizures. Up to 30% of children with epilepsy will be refractory to standard anticonvulsant therapy, and those with epileptic encephalopathy can be particularly challenging to treat.

The endocannabinoid system can modulate the physiologic processes underlying epileptogenesis. The anticonvulsant properties of several cannabinoids, namely Δ-tetrahydrocannabinol and cannabidiol (CBD), have been demonstrated in both in vitro and in vivo studies.

Cannabis-based therapies have been used for millennia to treat a variety of diseases including epilepsy. Several studies have shown that CBD, both in isolation as a pharmaceutical-grade preparation or as part of a CBD-enriched cannabis herbal extract, is beneficial in decreasing seizure frequency in children with treatment-resistant epilepsy.

Overall, cannabis herbal extracts appear to provide greater efficacy in decreasing seizure frequency, but the studies assessing cannabis herbal extract are either retrospective or small-scale observational studies. The two large randomized controlled studies assessing the efficacy of pharmaceutical-grade CBD in children with Dravet and Lennox-Gastaut syndromes showed similar efficacy to other anticonvulsants. Lack of data regarding appropriate dosing and pediatric pharmacokinetics continues to make authorization of cannabis-based therapies to children with treatment-resistant epilepsy challenging.”

https://www.ncbi.nlm.nih.gov/pubmed/31895184

https://insights.ovid.com/crossref?an=00004691-202001000-00002

A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-Tetrahydrocannabiphorol.

 Scientific Reports“(-)-Trans-Δ9-tetrahydrocannabinol (Δ9-THC) is the main compound responsible for the intoxicant activity of Cannabis sativa L. The length of the side alkyl chain influences the biological activity of this cannabinoid. In particular, synthetic analogues of Δ9-THC with a longer side chain have shown cannabimimetic properties far higher than Δ9-THC itself. In the attempt to define the phytocannabinoids profile that characterizes a medicinal cannabis variety, a new phytocannabinoid with the same structure of Δ9-THC but with a seven-term alkyl side chain was identified. The natural compound was isolated and fully characterized and its stereochemical configuration was assigned by match with the same compound obtained by a stereoselective synthesis. This new phytocannabinoid has been called (-)-trans-Δ9-tetrahydrocannabiphorol (Δ9-THCP). Along with Δ9-THCP, the corresponding cannabidiol (CBD) homolog with seven-term side alkyl chain (CBDP) was also isolated and unambiguously identified by match with its synthetic counterpart. The binding activity of Δ9-THCP against human CB1 receptor in vitro (Ki = 1.2 nM) resulted similar to that of CP55940 (Ki = 0.9 nM), a potent full CB1 agonist. In the cannabinoid tetrad pharmacological test, Δ9-THCP induced hypomotility, analgesia, catalepsy and decreased rectal temperature indicating a THC-like cannabimimetic activity. The presence of this new phytocannabinoid could account for the pharmacological properties of some cannabis varieties difficult to explain by the presence of the sole Δ9-THC.”

https://www.ncbi.nlm.nih.gov/pubmed/31889124

https://www.nature.com/articles/s41598-019-56785-1

Medical Cannabis Use in Palliative Care: Review of Clinical Effectiveness and Guidelines – An Update [Internet].

Cover of Medical Cannabis Use in Palliative Care: Review of Clinical Effectiveness and Guidelines – An Update“Palliative care is defined by the World Health Organization as “an approach that improves the quality of life of patients and their families facing the problem associated with life-threatening illness…”. The last days and hours of a person’s life can be associated with immense physical as well as emotional suffering Relief of pain and other distressing symptoms, and enhancement of quality of life, are among the essential elements of good palliative care. Palliative care could benefit an estimated 69% to 82% of dying individuals in Canada. As Canada’s population ages, with increasing prevalence of chronic conditions and treatments resulting in prolonged life, it is expected that there will be an increased need for palliative care services.

Approximately 9% of Canadians (or 2.7 million) reported using cannabis for medical purposes in the first half of 2019. Herbal cannabis (cannabis sativa) contains hundreds of pharmacological components, many of which are not well-characterized. Tetrahydrocannabinol (THC) is the most prevalent pharmacologically active compound and is primarily responsible for the psychoactive and physical effects of cannabis. Cannabidiol (also commonly referred to as CBD) is the second most prevalent. It has very little if any psychotropic effects. Quantity and ratio of these and other components can vary considerably between plants and even within the same plant.

Two prescription cannabinoids are currently marketed in Canada: Nabiximols (Sativex) which contains THC and cannabidiol, and Nabilone (Cesamet) which is a synthetic cannabinoid. Dronabinol (Marinol), synthetic THC, was withdrawn from the Canadian market however it is available in other jurisdictions. For the purposes of this report, medical cannabis refers to use of the cannabis plant or its extracts or synthetic cannabinoids for medical purposes.

Medical cannabis may be of value for a number of conditions, including but not limited to pain, nausea and vomiting, depression, anxiety and appetite stimulation. Adverse effects of cannabis are very common, developing in 80% to 90% of patients. These include but are not limited to psychiatric disturbances, sedation, speech disorders, impaired memory, dizziness, ataxia, addiction, irritability, and driving impairment. Risk of adverse effects is likely lower with cannabidiol alone as compared to THC. The potential for drug interactions is also an important concern. These risks must be considered along with the an apparent lack of evidence surrounding effectiveness of medical cannabis in many conditions for which its use is promoted.

This report updates and expands on a previous summary of abstracts report.9 The objective of the report is to review evidence and guidelines for use of medical cannabis in the palliative care setting.”

https://www.ncbi.nlm.nih.gov/pubmed/31873991

https://www.ncbi.nlm.nih.gov/books/NBK551867/

Medicinal and Synthetic Cannabinoids for Pediatric Patients: A Review of Clinical Effectiveness and Guidelines [Internet].

Cover of Medicinal and Synthetic Cannabinoids for Pediatric Patients: A Review of Clinical Effectiveness and Guidelines“Cannabinoids are pharmacologically active agents extracted from the cannabis plant. Cannabidiol and tetrahydrocannabinol (THC) are the most studied cannabinoids and both interact with endocannabinoid receptors in various human tissues. The endocannabinoid system moderates physiological functions, such as neurodevelopment, cognition, and motor control.

The products naturally derived from cannabis include marijuana (dried leaves and flowers, mostly for smoking) and oral cannabinoid extracts with varying concentrations of cannabinoids, including cannabidiol and THC. THC is the main psychoactive constituent and cannabidiol seems to have no psychoactive properties. In addition, there are two synthetical cannabinoids approved by the Food and Drug Administration (FDA) in the United States, dronabinol and nabilone, which are molecules similar to a type of THC (δ-9-THC)1 Nabilone is also approved in Canada. Dronabinol is indicated for chemotherapy-induced nausea and vomiting in children. The use of nabilone in children is not recommended.

In Canada, the minimum age for cannabis consumption varies by provinces and territories, and is either 18 or 19 years. A prescription is required to administer cannabinoids among children. Clinically, cannabis has been used to treat children with epilepsy, cancer palliation and primary treatment, chronic pain, and Parkinson disease.

The adverse events that clinicians need to monitor for include negative psychoactive sequelae and development of tolerance. Psychoactive sequelae may be positive, such as relaxation and euphoria, or negative, such as anxiety and irritability. In 2016, CADTH completed a Summary of Abstracts report on the use of cannabis in children with medical conditions such as attention deficit hyperactivity disorder, autism spectrum disorder, Tourette syndrome, epilepsy, posttraumatic stress disorder, or neurodegenerative diseases, and five non-randomized studies were identified. However, there were no control groups in the five studies included in the report.

It is unclear whether there is new evidence or clinical guidance for the use of medical cannabis in children with mental health conditions, neurodegenerative diseases, or pain disorders, particularly in comparison with other possible therapies for those conditions. There is a need to review the clinical effectiveness of cannabis for pediatric care, as well as clinical guidelines.”

https://www.ncbi.nlm.nih.gov/pubmed/31873990

https://www.ncbi.nlm.nih.gov/books/NBK551866/

Pharmacists and the future of cannabis medicine.

“To summarize the history and evolution of cannabis use and policies and to review current therapeutic uses, safety, and the central role pharmacists can play.

SUMMARY:

Cannabis regulation and use have evolved over the centuries and are becoming more widely accepted, with over two-thirds of states in the United States having an approved cannabis program. However, changing policy and a paucity of controlled clinical trials has led to questions on the safety and effectiveness of cannabinoid therapies. Although there are conditions for which cannabinoids may be helpful, potential contraindications, adverse effects, and drug-drug interactions should be taken into account.

CONCLUSION:

Pharmacists are in a unique position based on their accessibility, knowledge, and skills to guide product selection, dosing, and discuss drug interactions and adverse effects to educate patients on safe cannabis use, whether it be delta-9-tetrahydrocannabinol, cannabidiol, or a combination thereof. Pharmacists and pharmacy organizations, moreover, should advocate for an integral role in the medical cannabis movement to ensure patient safety and evaluate cannabinoid pharmacology, pharmacokinetics, drug-drug interactions, safety, and efficacy through rigorous investigations.”

https://www.ncbi.nlm.nih.gov/pubmed/31870860

https://www.japha.org/article/S1544-3191(19)30513-8/fulltext