Marijuana smoking and markers of testicular function among men from a fertility centre

Image result for oxford human reproduction

“Men who had ever smoked marijuana had significantly higher sperm concentration than men who had never smoked marijuana after adjusting for potential confounders.

These findings are not consistent with a deleterious effect of marijuana on testicular function.”

https://www.ncbi.nlm.nih.gov/pubmed/30726923

https://academic.oup.com/humrep/advance-article-abstract/doi/10.1093/humrep/dez002/5307080?redirectedFrom=fulltext

“SMOKING MARIJUANA APPEARS TO UP MEN’S SPERM COUNT—TO THE SURPRISE OF SCIENTISTS” https://www.newsweek.com/smoking-marijuana-appears-men-sperm-count-surprise-scientists-1318138

“Cannabis Smoking Associated With Higher Sperm Count, Study Finds”  https://www.bloomberg.com/news/articles/2019-02-06/cannabis-smoking-associated-with-higher-sperm-count-study-finds

“Smoking cannabis has unexpectedly been linked to greater fertility in men.” https://www.independent.ie/world-news/north-america/smoking-cannabis-can-make-men-more-fertile-say-scientists-37787137.html

Ketamine induces central antinociception mediated by endogenous cannabinoids and activation of CB1 receptors.

Neuroscience Letters

“The participation of endocannabinoids in central and peripheral antinociception induced by several compounds has been shown by our group.

In this study, we investigated the effect of endocannabinoids on the central antinociception induced by ketamine.

It was concluded that central antinociception induced by ketamine involves the activation of CB1 cannabinoidreceptors.

Mobilization of cannabinoids might be required for the activation of those receptors, since inhibitors of the endogenous cannabinoids potentiate the effect of Ketamine.”

https://www.ncbi.nlm.nih.gov/pubmed/30716423

https://www.sciencedirect.com/science/article/abs/pii/S0304394019300771?via%3Dihub

Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression.

Neurochemistry International“Altered endocannabinoid (eCB) signaling is suggested as an important contributor to the pathophysiology of depression.

In summary, our data suggest a decreased eCB signalling in the FSL rats, which could contribute to the depressive-like behaviour.

Interestingly, the altered eCB system activity appear to be hemisphere-specific in the limbic regions.

Our study support the existing literature and showed altered eCB system activity in this particular animal model of depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30716357

https://www.sciencedirect.com/science/article/abs/pii/S0197018618305151?via%3Dihub

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

The Prevalence of Nonprescription Cannabinoid-Based Medicines in British Children’s Hospices: Results of a National Survey.

View details for Journal of Palliative Medicine cover image

“Almost 50,000 children and young people are affected by life-limiting conditions in the United Kingdom, around a third of which use children’s hospices. Anecdotal evidence suggests that cannabinoid-based medicines (CBMs), specifically cannabis oil (CO), are being used by families with increasing frequency to manage distressing symptoms. The use of most nonprescription CBMs in the United Kingdom remains illegal.

Forty children’s hospices from across the four countries of the United Kingdom responded to the survey, representing 74% of British children’s hospices. About 87.5% of hospices knew of children who use CO therapeutically. Sixty-nine percent of those hospices have received requests to administer CO during an episode of care. Approaches by organizations around CO management varied across the sectors, including arrangements for storage, administration, and recording of its use. Hospices highlighted how the lack of available guidance made decision making more challenging. Only a third of responding organizations routinely questioned families about the use of cannabis when prescribing medicines.

CONCLUSION:

CO is used extensively by children who use children’s hospices. Despite recognizing the use of CO, many hospices are unable to support it. There is a need for clear guidelines on how hospices should approach the care needs of children, allowing hospices to meet the needs of children who use CO, and families in a safe, consistent, and relevant way, safeguarding all children, families, and professionals within the organization.”

Case Report: Clinical Outcome and Image Response of Two Patients With Secondary High-Grade Glioma Treated With Chemoradiation, PCV, and Cannabidiol.

Image result for frontiers in oncology

“We describe two patients with a confirmed diagnosis of high-grade gliomas (grades III/IV), both presenting with O6-methylguanine-DNA methyltransferase (MGMT) methylated and isocitrate dehydrogenase (IDH-1) mutated who, after subtotal resection, were submitted to chemoradiation and followed by PCV, a multiple drug regimen (procarbazine, lomustine, and vincristine) associated with cannabidiol (CBD).

Both patients presented with satisfactory clinical and imaging responses at periodic evaluations. Immediately after chemoradiation therapy, one of the patients presented with an exacerbated and precocious pseudoprogression (PSD) assessed by magnetic resonance imaging (MRI), which was resolved in a short period. The other patient presented with a marked remission of altered areas compared with the post-operative scans as assessed by MRI.

Such aspects are not commonly observed in patients only treated with conventional modalities. This observation might highlight the potential effect of CBD to increase PSD or improve chemoradiation responses that impact survival. Further investigation with more patients and critical molecular analyses should be performed.”

https://www.ncbi.nlm.nih.gov/pubmed/30713832

“These observations are of particular interest because the pharmacology of cannabinoids appears to be distinct from existing oncology medications and may offer a unique and possibly synergistic option for future glioma treatment.”

https://www.frontiersin.org/articles/10.3389/fonc.2018.00643/full

Novel Approaches for Treating Pain in Children.

Logo SpringerLink“Good pain management in children, especially those at end of life, is a crucial component of palliative medicine. The current review assesses some of the new and/or innovative ways to manage pain in children. The article focuses on some recent medications/pharmaceutical options such as cannabinoids and also innovative ways to administer medication to children, such as intranasal and inhalation.

RECENT FINDINGS:

Current approaches to pain management now include (1) new uses of old drugs such as ketamine and lidocaine, (2) use of new drugs/medications such as cannabinoids, and (3) creative use of old technology such as atomizers, intranasal drops, and inhalation. Typically, novel approaches to care rarely start in pediatrics or palliative care. The current review has presented some new and old drugs being utilized in new and old ways.”

https://www.ncbi.nlm.nih.gov/pubmed/30714078

https://link.springer.com/article/10.1007%2Fs11912-019-0766-6

A Comprehensive Review of Cannabis in Patients with Cancer: Availability in the USA, General Efficacy, and Safety.

 “As the legalization of medical cannabis continues across the USA, oncology care providers will be increasingly asked to provide recommendations regarding its use in the cancer setting.

In this article, we review recent literature that analyzes cannabis use specifically in patients with cancer and provide an accessible guide for clinicians, researchers, and patients.

We aimed to answer questions about the availability of cannabis in the USA, the trials supporting its use in the cancer setting, and the important factors to consider related to safety. Thirty states plus the District of Columbia have established comprehensive medical cannabis programs, each with different regulations and products available.

 

In June 2018, Epidiolex, a cannabis extraction product containing 99% CBD, was approved to treat refractory seizures; however, whole-plant products and non-prescription extraction products dominate the market.

 

Recent randomized, placebo-controlled studies of nabiximols (Sativex) in patients with refractory cancer-pain have largely shown no significant benefits. Conversely, large observational studies suggest patients with cancer using cannabis report significant improvement of many common symptoms.

 

Cannabis use appears well tolerated, with few serious adverse effects reported. Though prospective clinical trials are needed to provide the robust data required to establish the proper role of cannabinoid and cannabis-based therapy in cancer patients, physicians can draw upon the knowledge currently available to have informed discussions with their patients.”

https://www.ncbi.nlm.nih.gov/pubmed/30707319

https://link.springer.com/article/10.1007%2Fs11912-019-0757-7

Synthetic Cannabinoids Influence the Invasion of Glioblastoma Cell Lines in a Cell- and Receptor-Dependent Manner.

cancers-logo

“The current treatment of glioblastoma is not sufficient, since they are heterogeneous and often resistant to chemotherapy.

Earlier studies demonstrated effects of specific cannabinoid receptor (CB) agonists on the invasiveness of glioblastoma cell lines, but the exact mechanism remained unclear.

Three human glioblastoma cell lines were treated with synthetic CB ligands. The effect of cannabinoids on microRNAs (miRs), Akt, and on the expression of proliferation and apoptosis markers were analyzed.

Furthermore, in a model of organotypic hippocampal slice cultures cannabinoid mediated changes in the invasiveness were assessed. MicroRNAs and the activation of Akt which are related to cell migration, apoptosis, and proliferation were evaluated and found not to be associated with changes in the invasiveness after treatment with CB ligands.

Also proliferation and/or apoptosis were not altered after treatment. The effects of cannabinoids on invasiveness could be blocked by the application of receptor antagonists and are likely mediated via CB₁/CB₂.

In conclusion, our results suggest that cannabinoids can influence glioblastoma cell invasion in a receptor and cell type specific manner that is independent of proliferation and apoptosis. Thus, cannabinoids can potentially be used in the future as an addition to current therapy.”

Is cannabidiol the ideal drug to treat non-motor Parkinson’s disease symptoms?

 “Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rest tremor, postural disturbances, and rigidity. PD is also characterized by non-motor symptoms such as sleep disturbances, cognitive deficits, and psychiatric disorders such as psychosis, depression, and anxiety. The pharmacological treatment for these symptoms is limited in efficacy and induce significant adverse reactions, highlighting the need for better treatment options.

Cannabidiol (CBD) is a phytocannabinoid devoid of the euphoriant and cognitive effects of tetrahydrocannabinol, and preclinical and preliminary clinical studies suggest that this compound has therapeutic effect in non-motor symptoms of PD.

In the present text, we review the clinical studies of cannabinoids in PD and the preclinical and clinical studies specifically on CBD.

We found four randomized controlled trials (RCTs) involving the administration of agonists/antagonists of the cannabinoid 1 receptor, showing that these compounds were well tolerated, but only one study found positive results (reductions on levodopa-induced dyskinesia).

We found seven preclinical models of PD using CBD, with six studies showing a neuroprotective effect of CBD.

We found three trials involving CBD and PD: an open-label study, a case series, and an RCT. CBD was well tolerated, and all three studies reported significant therapeutic effects in non-motor symptoms (psychosis, rapid eye movement sleep behaviour disorder, daily activities, and stigma). However, sample sizes were small and CBD treatment was short (up to 6 weeks). Large-scale RCTs are needed to try to replicate these results and to assess the long-term safety of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30706171

https://link.springer.com/article/10.1007%2Fs00406-019-00982-6

Potential Use of Cannabinoids for the Treatment of Pancreatic Cancer.

Image result for Journal Pancreatic Cancer

Cannabinoid extracts may have anticancer properties, which can improve cancer treatment outcomes.

The aim of this review is to determine the potentially utility of cannabinoids in the treatment of pancreatic cancer.

Results: Cannabinol receptors have been identified in pancreatic cancer with several studies showing in vitroantiproliferative and proapoptotic effects. The main active substances found in cannabis plants are cannabidiol (CBD) and tetrahydrocannabinol (THC). There effects are predominately mediated through, but not limited to cannabinoid receptor-1, cannabinoid receptor-2, and G-protein-coupled receptor 55 pathways. In vitro studies consistently demonstrated tumor growth-inhibiting effects with CBD, THC, and synthetic derivatives. Synergistic treatment effects have been shown in two studies with the combination of CBD/synthetic cannabinoid receptor ligands and chemotherapy in xenograft and genetically modified spontaneous pancreatic cancer models. There are, however, no clinical studies to date showing treatment benefits in patients with pancreatic cancer.

Conclusions: Cannabinoids may be an effective adjunct for the treatment of pancreatic cancer. Data on the anticancer effectiveness of various cannabinoid formulations, treatment dosing, precise mode of action, and clinical studies are lacking.”

“Endogenous cannabinoids, synthetic or cannabis extracted from plants, can reduce tumor invasion and growth, induce tumor cell death, and inhibit tumor angiogenesis via cannabinoid receptor or receptor-independent pathways. Cannabinoid receptors appear to be highly expressed in pancreatic cancer compared with normal pancreatic tissue. CBD and THC appear to have antiproliferative and proapoptotic effects.”