Hemp shows potential for treating ovarian cancer

“Researchers demonstrate hemp’s ability to slow cancer growth and uncover mechanism for its cancer-fighting ability.

Results from some of the first studies to examine hemp’s ability to fight cancer show that it might one day be useful as plant-based treatment for ovarian cancer. Hemp is part of the same cannabis family as marijuana but doesn’t have any psychoactive properties or cause addiction.

“Hemp, like marijuana, contains therapeutically valuable components such as cannabidiol, cannabinol, and tetrahydrocannabinol,”

“Our findings from this research as well as prior research show that KY hemp slows ovarian cancer comparable to or even better than the current ovarian cancer drug Cisplatin,” said Turner. “Since Cisplatin exhibits high toxicity, we anticipate that hemp would carry less side effects.”

https://www.sciencedaily.com/releases/2018/04/180423155046.htm

“Hemp Shows Potential for Treating Ovarian Cancer”  https://www.eurekalert.org/multimedia/pub/167927.php

“Hemp Can Fight Cancer Too, Reveal Scientists in New Cannabis Study”  https://www.inverse.com/article/44039-cancer-hemp-plant-based-treatment

“Studies show hemp’s potential for treating ovarian cancer”         https://www.news-medical.net/news/20180424/Studies-show-hemps-potential-for-treating-ovarian-cancer.aspx

“Hemp shows potential for treating ovarian cancer”  https://www.europeanpharmaceuticalreview.com/news/75103/hemp-treating-ovarian-cancer/

“Hemp portrays possibility for curing ovarian cancer”  https://ebuzzcommunity.com/2018/04/hemp-portrays-possibility-for-curing-ovarian-cancer/

“Hemp Extract Inhibits Growth Of Ovarian Cancer, Research Finds”  https://thefreshtoast.com/rx/hemp-extract-inhibits-growth-of-ovarian-cancer-research-finds/

Toxicity, Cannabinoids.

Cover of StatPearls

“Cannabinoids are a collective group of compounds that act on cannabinoid receptors. They include plant-derived phytocannabinoids, synthetic cannabinoids, and endogenously-derived endocannabinoids. The primary source of cannabinoid toxicity is from plant-derived cannabinoids and synthetic cannabinoids. These agents act as cannabinoid receptor agonists. More than 60 naturally occurring cannabinoids are found in the Sativa and Indica species of Cannabis, with delta-9 tetrahydrocannabinol (THC) being the main psychoactive compound. Other naturally occurring cannabinoids include cannabidiol and cannabinol. Marijuana is the most common colloquial name for crushed, dried leaves and flowers of the Cannabis plant. In recent years, there have been many reports of marijuana toxicity, primarily in the pediatric population, as medical and recreational marijuana has been legalized. The terms phytocannabinoids, marijuana and cannabis are used interchangeably. Synthetic cannabinoids were created for therapeutic and research purposes; however, despite legal efforts to limit their availability, synthetic cannabinoids have become an increasingly common drug of abuse, sold under various street names such as K2, Spice, and Black Mamba. Synthetic cannabinoids are associated with much more morbidity and mortality than the phytocannabinoids. Prescription preparations for medical usage include dronabinol, or pure THC, nabilone, a synthetic cannabinoid, and cannabidiol (CBD). Pharmaceutical use of cannabinoids is an ongoing field of research.”

https://www.ncbi.nlm.nih.gov/pubmed/29489164

https://www.ncbi.nlm.nih.gov/books/NBK482175/

Detection and Quantification of Cannabinoids in Extracts of Cannabis sativa Roots Using LC-MS/MS.

 

“A liquid chromatography-tandem mass spectrometry single-laboratory validation was performed for the detection and quantification of the 10 major cannabinoids of cannabis, namely, (-)-trans9-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, tetrahydrocannabivarian, cannabinol, (-)-trans8-tetrahydrocannabinol, cannabidiolic acid, cannabigerolic acid, and Δ9-tetrahydrocannabinolic acid-A, in the root extract of Cannabis sativa. Acetonitrile : methanol (80 : 20, v/v) was used for extraction; d3-cannabidiol and d3– tetrahydrocannabinol were used as the internal standards. All 10 cannabinoids showed a good regression relationship with r2 > 0.99. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in extracts of cannabis roots. To our knowledge, this is the first report for the quantification of cannabinoids in cannabis roots.”

https://www.ncbi.nlm.nih.gov/pubmed/29359294

https://www.thieme-connect.de/DOI/DOI?10.1055/s-0044-100798

Medical marijuana for the treatment of vismodegib-related muscle spasm

JAAD Case Reports

“Basal cell carcinoma (BCC) arises from loss-of-function mutations in tumor suppressor patched homologue 1, which normally inhibits smoothened homologue in the sonic hedgehog signaling pathway. Vismodegib, a smoothened homologue inhibitor, is US Food and Drug Administration (FDA) approved for metastatic or locally advanced BCC that has recurred after surgery or for patients who are not candidates for surgery and radiation. Common adverse effects of vismodegib are muscle spasms, alopecia, dysgeusia, nausea, and weight loss. Muscle spasms worsen with duration of drug administration and may lead to drug discontinuation.

We report a case of vismodegib-related muscle spasm that was successfully treated with medical marijuana (MM).

During the first week of vismodegib and radiation, the patient started MM, having heard of its indication in the treatment of muscle cramps. She smoked 3 to 4 joints daily of Trainwreck strain, containing 18.6% tetrahydrocannabinol (THC), 0.0% cannabidiol (CBD), and 0.0% cannabinol. Her muscle spasms resolved immediately. She continued MM for 3.5 weeks, until the cost of MM became prohibitive. She reported no adverse effects from MM. Complete resolution of muscle spasms was sustained through the remaining 3.5 weeks of vismodegib. Complete blood count, comprehensive metabolic panel, and lactate dehydrogenase level were monitored throughout the study with no significant changes. As of 18 months posttreatment, the patient had a complete clinical response of her BCC.

One marijuana joint contains, on average, 0.66 g of marijuana, although the definition of a joint is highly variable. With any MM formulation, patients should start at a low dose and gradually titrate to effect. Additional studies could confirm safety and efficacy and better specify the optimal cannabinoid subtypes, preparations, and dosages that may be most beneficial for vismodegib-induced muscle spasms.”

http://www.jaadcasereports.org/article/S2352-5126(17)30124-8/fulltext

Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry.

Image result for Clin Chem Lab Med.

“Cannabis has been used since ancient times to relieve neuropathic pain, to lower intraocular pressure, to increase appetite and finally to decrease nausea and vomiting.

The combination of the psychoactive cannabis alkaloid Δ9-tetrahydrocannabinol (THC) with the non-psychotropic alkaloids cannabidiol (CBD) and cannabinol (CBN) demonstrated a higher activity than THC alone.

Extraction efficiency of oil was significantly higher than that of water with respect to the different cannabinoids.

Fifteen minutes boiling was sufficient to achieve the highest concentrations of cannabinoids in the cannabis tea solutions.

As the first and most important aim of the different cannabis preparations is to guarantee therapeutic continuity in treated individuals, a strictly standardized preparation protocol is necessary to assure the availability of a homogeneous product of defined stability.”

https://www.ncbi.nlm.nih.gov/pubmed/28207408

Molecular Pharmacology of Phytocannabinoids.

Related image

“Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years.

The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content.

Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2.

Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis.

This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene.

The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond.

The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects.

The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.”

https://www.ncbi.nlm.nih.gov/pubmed/28120231

Cannabinol and cannabidiol exert opposing effects on rat feeding patterns.

 Image result for Psychopharmacology (Berl).

“Increased food consumption following ∆(9)-tetrahydrocannabinol-induced cannabinoid type 1 receptor agonism is well documented.

However, possible non-∆(9)-tetrahydrocannabinol phytocannabinoid-induced feeding effects have yet to be fully investigated. Therefore, we have assessed the effects of the individual phytocannabinoids, cannabigerol, cannabidiol and cannabinol, upon feeding behaviors.

Cannabinol induced a CB(1)R-mediated increase in appetitive behaviors via significant reductions in the latency to feed and increases in consummatory behaviors via increases in meal 1 size and duration. Cannabinol also significantly increased the intake during hour 1 and total chow consumed during the test. Conversely, cannabidiol significantly reduced total chow consumption over the test period. Cannabigerol administration induced no changes to feeding behavior.

This is the first time cannabinol has been shown to increase feeding. Therefore, cannabinol could, in the future, provide an alternative to the currently used and psychotropic ∆(9)-tetrahydrocannabinol-based medicines since cannabinol is currently considered to be non-psychotropic.

Furthermore, cannabidiol reduced food intake in line with some existing reports, supporting the need for further mechanistic and behavioral work examining possible anti-obesity effects of cannabidiol.”

https://www.ncbi.nlm.nih.gov/pubmed/22543671

Cannabinoids, inflammation, and fibrosis.

Image result for FASEB J.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed.

The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents.

Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

https://www.ncbi.nlm.nih.gov/pubmed/27435265

Complex pharmacology of natural cannabinoids: evidence for partial agonist activity of delta9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors.

“Delta9-tetrahydrocannabinol (delta9-THC), cannabinol and cannabidiol are three important natural cannabinoids from the Marijuana plant (Cannabis sativa).

Using [35S]GTP-gamma-S binding on rat cerebellar homogenate as an index of cannabinoid receptor activation we show that: delta9-THC does not induce the maximal effect obtained by classical cannabinoid receptor agonists such as CP55940.

Moreover at high concentration delta9-THC exhibits antagonist properties.

Cannabinol is a weak agonist on rat cerebellar cannabinoid receptors and cannabidiol behaves as an antagonist acting in the micromolar range.”

http://www.ncbi.nlm.nih.gov/pubmed/9667767

Cannabinoids, inflammation, and fibrosis.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (CT-3, AJA; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

http://www.ncbi.nlm.nih.gov/pubmed/27435265