Roles of Cannabinoids in Melanoma: Evidence from In Vivo Studies

ijms-logo“Melanoma is the fourth most common type of cancer diagnosed in Australians after breast, prostate, and colorectal cancers. While there has been substantial progress in the treatment of cancer in general, malignant melanoma, in particular, is resistant to existing medical therapies requiring an urgent need to develop effective treatments with lesser side effects.

Several studies have shown that “cannabinoids”, the major compounds of the Cannabis sativaL. plant, can reduce cell proliferation and induce apoptosis in melanoma cells.

Despite prohibited use of Cannabis in most parts of the world, in recent years there have been renewed interests in exploiting the beneficial health effects of the Cannabis plant-derived compounds. Therefore, the aim of this study was in the first instance to review the evidence from in vivo studies on the effects of cannabinoids on melanoma.

The findings revealed cannabinoids, individually or combined, reduced tumor growth and promoted apoptosis and autophagy in melanoma cells.

Further preclinical and animal studies are required to determine the underlying mechanisms of cannabinoids-mediated inhibition of cancer-signaling pathways. Well-structured, randomized clinical studies on cannabinoid use in melanoma patients would also be required prior to cannabinoids becoming a viable and recognized therapeutic option for melanoma treatment in patients.”

https://pubmed.ncbi.nlm.nih.gov/32839414/

https://www.mdpi.com/1422-0067/21/17/6040

Cannabinoids for People with ASD: A Systematic Review of Published and Ongoing Studies

brainsci-logo“The etiopathogenesis of autism spectrum disorder (ASD) remains largely unclear.

Among other biological hypotheses, researchers have evidenced an imbalance in the endocannabinoid (eCB) system, which regulates some functions typically impaired in ASD, such as emotional responses and social interaction. Additionally, cannabidiol (CBD), the non-intoxicating component of Cannabis sativa, was recently approved for treatment-resistant epilepsy.

Epilepsy represents a common medical condition in people with ASD. Additionally, the two conditions share some neuropathological mechanisms, particularly GABAergic dysfunctions. Hence, it was hypothesized that cannabinoids could be useful in improving ASD symptoms.

The findings were promising, as cannabinoids appeared to improve some ASD-associated symptoms, such as problem behaviors, sleep problems, and hyperactivity, with limited cardiac and metabolic side effects. Conversely, the knowledge of their effects on ASD core symptoms is scarce.

Interestingly, cannabinoids generally allowed to reduce the number of prescribed medications and decreased the frequency of seizures in patients with comorbid epilepsy. Mechanisms of action could be linked to the excitatory/inhibitory imbalance found in people with ASD. However, further trials with better characterization and homogenization of samples, and well-defined outcomes should be implemented.”

https://pubmed.ncbi.nlm.nih.gov/32825313/

https://www.mdpi.com/2076-3425/10/9/572

Cannabis, More Than the Euphoria: Its Therapeutic Use in Drug-Resistant Epilepsy

 See the source image“A significant number of epilepsy patients are refractory to conventional antiepileptic drugs. These patients experience considerable neurocognitive impairments that impact their quality of life and ability to function independently. This need for alternative treatment has generated increased interest in cannabis use as a therapeutic option in these patients.

This review seeks to analyze data presented on the pharmacology, safety, and efficacy of cannabis use in patients with drug-resistant epilepsy (DRE) and to propose any future recommendations regarding its use.

The two foremost phytocannabinoids of cannabis showing anticonvulsant properties are tetrahydrocannabinol (THC) and cannabidiol (CBD).

Due to the psychoactive properties of THC, most studies focused on CBD use in these patients. The use of CBD as an adjunct resulted in decreased seizure frequency, and secondary benefits observed included improvement in mood, alertness and sleep. Adverse events (AEs) reported were drowsiness, diarrhea, increased transaminases and worsening of seizures.

It can safely be concluded that there is a significant benefit in DRE patients using CBD as adjunctive therapy. However, further controlled and adequately powered studies are needed to assess the pharmacokinetics and impact of the long-term use of cannabis.”

https://pubmed.ncbi.nlm.nih.gov/32832296/

“The anticonvulsant properties of cannabis have been reported for several years; however, its use as adjunctive therapy in DRE has increased in recent years. Cannabis mediates the ECS, which affects neuronal excitability. This makes it a superior choice for the adjunctive treatment of DRE patients.”

https://www.cureus.com/articles/36299-cannabis-more-than-the-euphoria-its-therapeutic-use-in-drug-resistant-epilepsy

Effects of ∆ 9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies

Medscape | BMC Psychiatry - Content Listing“Posttraumatic stress disorder (PTSD) may stem from the formation of aberrant and enduring aversive memories. Some PTSD patients have recreationally used Cannabis, probably aiming at relieving their symptomatology.

Here, we seek to review and discuss the effects of THC on aversive memory extinction and anxiety in healthy humans and PTSD patients.

Results: At low doses, THC can enhance the extinction rate and reduce anxiety responses. Both effects involve the activation of cannabinoid type-1 receptors in discrete components of the corticolimbic circuitry, which could couterbalance the low “endocannabinoid tonus” reported in PTSD patients. The advantage of associating CBD with THC to attenuate anxiety while minimizing the potential psychotic or anxiogenic effect produced by high doses of THC has been reported. The effects of THC either alone or combined with CBD on aversive memory reconsolidation, however, are still unknown.

Conclusions: Current evidence from healthy humans and PTSD patients supports the THC value to suppress anxiety and aversive memory expression without producing significant adverse effects if used in low doses or when associated with CBD. Future studies are guaranteed to address open questions related to their dose ratios, administration routes, pharmacokinetic interactions, sex-dependent differences, and prolonged efficacy.”

https://pubmed.ncbi.nlm.nih.gov/32842985/

“Altogether, the findings encourage future controlled studies evaluating the effects of low doses of THC to attenuate aversive/traumatic memory expression in PTSD patients.”

https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-020-02813-8

Cannabinoid Effects on Experimental Colorectal Cancer Models Reduce Aberrant Crypt Foci (ACF) and Tumor Volume: A Systematic Review

See the source image “Colorectal cancer represents a heavy burden for health systems worldwide, being the third most common cancer worldwide. Despite the breakthroughs in medicine, current chemotherapeutic options continue to have important side effects and may not be effective in preventing disease progression.

Cannabinoids might be substances with possible therapeutic potential for cancer because they can attenuate the side effects of chemotherapy and have antiproliferative and antimetastatic effects.

We aim to determine, through a systematic review of experimental studies performed on animal CRC models, if cannabinoids can reduce the formation of preneoplastic lesions (aberrant crypt foci), number, and volume of neoplastic lesions.

Results: Eight in vivo experimental studies were included in the analysis after the full-text evaluation. Seven studies were azoxymethane (AOM) colorectal cancer models, and four studies were xenograft models. Cannabidiol botanical substance (CBD BS) and rimonabant achieved high aberrant crypt foci (ACF) reduction (86% and 75.4%, respectively). Cannabigerol, O-1602, and URB-602 demonstrated a high capacity for tumor volume reduction. Induction of apoptosis, interaction with cell survival, growth pathways, and angiogenesis inhibition were the mechanisms extracted from the studies that explain cannabinoids’ actions on CRC.

Conclusions: Cannabinoids have incredible potential as antineoplastic agents as experimental models demonstrate that they can reduce tumor volume and ACF formation. It is crucial to conduct more experimental studies to understand the pharmacology of cannabinoids in CRC better.”

https://pubmed.ncbi.nlm.nih.gov/32765628/

“Current literature findings demonstrate that cannabinoids might have potential as antineoplastic agents because they can reduce tumor volume and ACF formation.”

https://www.hindawi.com/journals/ecam/2020/2371527/

Role of cannabinoids in alcohol-induced neuroinflammation

 Progress in Neuro-Psychopharmacology and Biological Psychiatry“Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure.

Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response.

Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades.

Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.”

https://pubmed.ncbi.nlm.nih.gov/32758518/

“Cannabinoid modulation represents an extremely interesting therapeutic target in alcohol-induced chronic neuroinflammation.”

https://www.sciencedirect.com/science/article/pii/S0278584620303705?via%3Dihub

Fig. 1

The Effects of Cannabidiol and Prognostic Role of TRPV2 in Human Endometrial Cancer

ijms-logo“Several studies support, both in vitro and in vivo, the anti-cancer effects of cannabidiol (CBD), a transient receptor potential vanilloid 2 (TRPV2) ligand. TRPV2, often dysregulated in tumors, is associated with altered cell proliferation and aggressiveness.

Endometrial cancer (EC) is historically divided in type I endometrioid EC and type II non-endometrioid EC, associated with poor prognosis. Treatment options with chemotherapy and combinations with radiation showed only limited efficacy. Since no data are reported concerning TRPV2 expression as well as CBD potential effects in EC, the aim of this study was to evaluate the expression of TRPV2 in biopsies and cell lines as well as the effects of CBD in in vitro models. Overall survival (OS), progression-free survival (PFS), cell viability, migration, and chemo-resistance have been evaluated.

Results show that TRPV2 expression increased with the malignancy of the cancer tissue and correlated with shorter PFS (p = 0.0224). Moreover, in vitro TRPV2 over-expression in Ishikawa cell line increased migratory ability and response to cisplatin. CBD reduced cell viability, activating predominantly apoptosis in type I cells and autophagy in mixed type EC cells. The CBD improved chemotherapeutic drugs cytotoxic effects, enhanced by TRPV2 over-expression. Hence, TRPV2 could be considered as a marker for optimizing the therapy and CBD might be a useful therapeutic option as adjuvant therapy.”

https://pubmed.ncbi.nlm.nih.gov/32751388/

https://www.mdpi.com/1422-0067/21/15/5409

Cytotoxic Effects of Cannabinoids on Human HT-29 Colorectal Adenocarcinoma Cells: Different Mechanisms of THC, CBD, and CB83

ijms-logo “In this study, we investigated the effects of exposition to IC50 dose for 24 h of a new synthetic cannabinoid (CB83) and of phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on HT-29 colorectal carcinoma cells. Cell viability and proliferative activity evaluated using the MTT, lactate dehydrogenase (LDH), and CyQUANT assays showed that cell viability was significantly affected when CB83, THC, and CBD were administered to cells.

The results obtained showed that the reduced glutathione/oxidized glutathione ratio was significantly reduced in the cells exposed to CBD and significantly increased in the cells treated with the CB83 when compared to the controls. CBD treatment causes a significant increase in malondialdehyde content. The catalase activity was significantly reduced in HT-29 cells after incubation with CB83, THC, and CBD. The activities of glutathione reductase and glutathione peroxidase were significantly increased in cells exposed to THC and significantly decreased in those treated with CBD. The ascorbic acid content was significantly reduced in cells exposed to CB83, THC, and CBD. The ultrastructural investigation by TEM highlighted a significantly increased percentage of cells apoptotic and necrotic after CB83 exposition. The Annexin V-Propidium Iodide assay showed a significantly increased percentage of cells apoptotic after CB83 exposition and necrotic cells after CBD and THC exposition.

Our results proved that only CBD induced oxidative stress in HT-29 colorectal carcinoma cells via CB receptor-independent mechanisms and that CB83 caused a mainly CB2 receptor-mediated antiproliferative effect comparable to 5-Fuorouracil, which is still the mainstay drug in protocols for colorectal cancer.”

https://pubmed.ncbi.nlm.nih.gov/32752303/

https://www.mdpi.com/1422-0067/21/15/5533

Cannabidiol normalizes resting-state functional connectivity in treatment-resistant epilepsy

See the source image“Resting-state (rs) network dysfunction is a contributing factor to treatment resistance in epilepsy. In treatment-resistant epilepsy (TRE), pharmacological and nonpharmacological therapies have been shown to improve such dysfunction.

In this study, our goal was to prospectively evaluate the effect of highly purified plant-derived cannabidiol (CBD; Epidiolex®) on rs functional magnetic resonance imaging (fMRI) functional connectivity (rs-FC).

We hypothesized that CBD would change and potentially normalize the rs-FC in TRE.

Results: Participants with TRE showed average decrease of 71.7% in SF (p < 0.0001) and improved CSSS, AEP, and POMS confusion, depression, and fatigue subscores (all p < 0.05) on-CBD with POMS scores becoming similar to those of HCs. Paired t-tests showed significant pre-/on-CBD changes in rs-FC in cerebellum, frontal areas, temporal areas, hippocampus, and amygdala with some of them correlating with improvement in behavioral measures. Significant differences in rs-FC between pre-CBD and HCs were found in cerebellum, frontal, and occipital regions. After controlling for changes in SF with CBD, these differences were no longer present when comparing on-CBD to HCs.

Significance: This study indicates that highly purified CBD modulates and potentially normalizes rs-FC in the epileptic brain. This effect may underlie its efficacy. This study provides Class III evidence for CBD’s normalizing effect on rs-FC in TRE.”

https://pubmed.ncbi.nlm.nih.gov/32745959/

https://www.epilepsybehavior.com/article/S1525-5050(20)30476-5/fulltext

Alleviative effects of Cannabis flower on migraine and headache

 Journal of Integrative Medicine“Few studies to date have measured the real-time effects of consumption of common and commercially available Cannabis products for the treatment of headache and migraine under naturalistic conditions. This study examines, for the first time, the effectiveness of using dried Cannabis flower, the most widely used type of Cannabis product in the United States, in actual time for treatment of headache- and migraine-related pain and the associations between different product characteristics and changes in symptom intensity following Cannabis use.

Results

Ninety-four percent of users experienced symptom relief within a two-hour observation window. The average symptom intensity reduction was 3.3 points on a 0−10 scale (standard deviation = 2.28, Cohen’s d = 1.58), with males experiencing greater relief than females (P < 0.001) and a trend that younger users (< 35 years) experience greater relief than older users (P = 0.08). Mixed effects regression models showed that, among the known (i.e., labeled) product characteristics, tetrahydrocannabinol levels 10% and higher are the strongest independent predictors of symptom relief, and this effect is particularly prominent in headache rather than migraine sufferers (P < 0.05), females (P < 0.05) and younger users (P < 0.001). Females and younger users also appear to gain greater symptom relief from flower labeled as “C. indica” rather than “C. sativa” or other hybrid strains.

Conclusion

These results suggest that whole dried Cannabis flower may be an effective medication for treatment of migraine- and headache-related pain, but the effectiveness differs according to characteristics of the Cannabis plant, the combustion methods, and the age and gender of the patient.”

https://www.sciencedirect.com/science/article/abs/pii/S2095496420300741