The antitumor activity of cannabidiol on lung cancer cell lines A549 and H1299: the role of apoptosis

Publication Cover“In the recent years, the application of new antitumor drugs has focused on the replacement of conventional chemotherapeutics with compounds derived from natural products.

Cannabidiol (CBD) is one of the 113 cannabinoids derived from the plant Cannabis sativa and is characterized with complex and not entirely understood biological function. Unlike the other most abundant cannabinoid in Cannabis sativa – tetrahydrocannabinol, cannabidiol has low affinity to the endocannabinoid receptors and the manifestation of its activity does not appear to rely on the endocannabinoid system.

Cannabidiol is used in the treatment of many diseases including some types of cancer.

The aim of our study was to evaluate the cytotoxic activity of cannabidiol and its effect on the process of programmed cell death. This process is directly involved in the antitumor effect of many drugs.

We found that CBD treatment led to a dose-dependant apoptosis increase in p53 positive A549 cells.

Several studies have demonstrated that cannabinoids also have antineoplastic effect and are usually accompanied with no negative side effects such as the ones produced by the conventional chemotherapy treatment.”

https://www.tandfonline.com/doi/full/10.1080/13102818.2021.1915870

The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/

Cannabidiol Induces Apoptosis and Perturbs Mitochondrial Function in Human and Canine Glioma Cells

Frontiers in Pharmacology (@FrontPharmacol) | Twitter“Cannabidiol (CBD), the major non-psychoactive compound found in cannabis, is frequently used both as a nutraceutical and therapeutic.

Despite anecdotal evidence as an anticancer agent, little is known about the effect CBD has on cancer cells. Given the intractability and poor prognoses of brain cancers in human and veterinary medicine, we sought to characterize the in vitro cytotoxicity of CBD on human and canine gliomas.

Glioma cells treated with CBD showed a range of cytotoxicity from 4.9 to 8.2 μg/ml; canine cells appeared to be more sensitive than human.

These results demonstrate the cytotoxic nature of CBD in human and canine glioma cells and suggest a mechanism of action involving dysregulation of calcium homeostasis and mitochondrial activity.”

https://pubmed.ncbi.nlm.nih.gov/34456736/

“In this present study, we demonstrate that highly purified CBD isolate reduced proliferation and induced caspase-mediated cell death, suggestive of apoptosis, in both canine glioma cell lines SDT3G and J3TBG as well as the human glioma cell lines U87MG and U373MG Uppsala. The growing body of knowledge of the pharmacology, anticancer effects, and other therapeutically relevant properties of cannabidiol reveal the exciting potential of CBD as a potential clinical therapeutic.”

https://www.frontiersin.org/articles/10.3389/fphar.2021.725136/full

Cannabidiol reverses memory impairments and activates components of the Akt/GSK3β pathway in an experimental model of estrogen depletion

Behavioural Brain Research“Clinical and preclinical evidence has indicated that estrogen depletion leads to memory impairments and increases the susceptibility to neural damage.

Here, we have sought to investigate the effects of Cannabidiol (CBD) a non-psychotomimetic compound from Cannabis sativa, on memory deficits induced by estrogen depletion in rats, and its underlying mechanisms.

Results revealed that ovariectomy impaired avoidance memory, and CBD was able to completely reverse estrogen depletion-induced memory impairment. Ovariectomy also reduced Akt/GSK3β pathway’s activation by decreasing the phosphorylation levels of Akt and GSK3β and Bcl2 levels, which were ameliorated by CBD.

The present results indicate that CBD leads to a functional recovery accompanied by the Akt/GSK3β survival pathway’s activation, supporting its potential as a treatment for estrogen decline-induced deterioration of neural functioning and maintenance.”

https://pubmed.ncbi.nlm.nih.gov/34450240/

“In the present study, we aimed to understand the possible neuroprotective effect of CBD against estrogen depletion-induced emotional memory deficits, using an animal model of ovariectomy-induced estrogen depletion. Once CBD and estradiol modulate a common pathway, we speculated whether CBD would be able to reverse the deleterious effect of estradiol decline observed in menopause. Results revealed that ovariectomy impaired avoidance memory, and CBD was able to completely reverse estrogen depletion-induced memory impairment.”

https://www.sciencedirect.com/science/article/abs/pii/S0166432821004435?via%3Dihub

Hemp ( Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product

plants-logo“Hemp flour from Dacia Secuieni and Zenit varieties was added to bread in different proportions (5%, 10%, 15% and 20%) to improve its nutritional properties.

The purpose of this paper was to present the advanced nutritional characteristics of these bread samples.

The selected varieties of hemp, accepted for human consumption, met the requirements for the maximum accepted level of THC in seeds. The protein content of new products increased from 8.76 to 11.48%, lipids increased from 0.59 to 5.41%, mineral content from 1.33 to 1.62%, and fiber content from 1.17 to 5.84%. Elasticity and porosity decreased from 95.51 to 80% and 78.65 to 72.24%, respectively. K, Mg, Ca, P, Mn and Fe are the main mineral substances in bread with addition of hemp flour from the Dacia Secuieni and Zenit varieties.

The total amount of unsaturated fatty acids in the bread samples with hemp flour ranged from 67.93 g/100 g and 69.82 g/100 g. Eight amino acids were identified, of which three were essential (lysine, phenylalanine, histidine). Lysine, the deficient amino acid in wheat bread, increased from 0.003 to 0.101 g/100 g. Sucrose and fructose decreased with the addition of hemp flour, and glucose has not been identified. The amount of yeasts and molds decreased in the first 3 days of storage. Regarding the textural profile, the best results were obtained for the samples with 5% addition.

In conclusion, bread with the addition of hemp flour has been shown to have superior nutritional properties to wheat bread.”

https://pubmed.ncbi.nlm.nih.gov/34451603/

https://www.mdpi.com/2223-7747/10/8/1558

Cannabis and Inflammation in HIV: A Review of Human and Animal Studies

viruses-logo“Persistent inflammation occurs in people with HIV (PWH) and has many downstream adverse effects including myocardial infarction, neurocognitive impairment and death.

Because the proportion of people with HIV who use cannabis is high and cannabis may be anti-inflammatory, it is important to characterize the impact of cannabis use on inflammation specifically in PWH. We performed a selective, non-exhaustive review of the literature on the effects of cannabis on inflammation in PWH.

Research in this area suggests that cannabinoids are anti-inflammatory in the setting of HIV. Anti-inflammatory actions are mediated in many cases through effects on the endocannabinoid system (ECS) in the gut, and through stabilization of gut-blood barrier integrity. Cannabidiol may be particularly important as an anti-inflammatory cannabinoid. Cannabis may provide a beneficial intervention to reduce morbidity related to inflammation in PWH.”

https://pubmed.ncbi.nlm.nih.gov/34452386/

https://www.mdpi.com/1999-4915/13/8/1521

Cannabis Extract Has a Positive-Immunostimulating Effect through Proteolytic System and Metabolic Compounds of Honey Bee ( Apis mellifera) Workers

animals-logo“In the study, we assessed the effect of hemp extract on activities of resistance parameters and the metabolic compound concentration in adult workers’ hemolymph. Bees were divided into the following groups: (1) control group fed with mixture of sugar and water-glycerine solution, (2) experimental group with pure sugar syrup and inside with cotton strips soaked with hemp extract, (3) experimental group with a mixture of sugar syrup with hemp extract. Hemp extracts caused an increase in the protein concentrations and reduced the protease activities regardless of the administration method. The protease inhibitor activities were decreased only in the group that received hemp extract on the strips. The biomarker activities (ALP, ALT, AST) increased from the control group and workers feeding extract in syrup and decreased in workers supplemented with the extract on strips. In young, 2-day-old workers, the glucose concentration was higher in the groups feeding with the extract than in the control. Hemp extract influenced an increase in urea concentrations in workers’ hemolymph in comparison with the control. The hemp supplementation positively influences the immune system of workers, and the appropriate method of administration may be adapted to the health problems of bees.”

https://pubmed.ncbi.nlm.nih.gov/34438647/

“The aim of our study was to test the immunostimulating effect of a diet with hemp extract on the resistance of the honey bee (Apis mellifera). The experiment compared the effect of supplementation between the bees receiving the extract in the form of a mixture with sugar syrup and on the strip with the extract, compared to the bees that had no contact with substance. In order to determine this effect, the biochemical indicators were analyzed: the proteolytic system (proteases, protease inhibitors, total protein concentration) responsible for the fight against pathogens/parasites, biomarkers (ALT, AST, ALP), and the basic components of metabolism (glucose and urea concentrations). Parameters were determined in the hemolymph of 2- and 7-day-old workers. Hemp extracts caused an increase in the protein concentrations. Regardless of the method of administration, proteases decreased. Protease inhibitors increased, except supplementation on strips where the activity decreased. The biomarker activities increased in the control group and workers feeding extract in syrup and decreased in workers supplemented with the extract on strips. The results of the metabolic component were as follows: glucose and urea concentrations indicate that the extract will not adversely affect metabolic changes in the insect’s organism. Hemp extract improves the natural immunity of bees.”

https://www.mdpi.com/2076-2615/11/8/2190

Changes in Hepatic Phospholipid Metabolism in Rats under UV Irradiation and Topically Treated with Cannabidiol

antioxidants-logo“The liver is a key metabolic organ that is particularly sensitive to environmental factors, including UV radiation. As UV radiation induces oxidative stress and inflammation, natural compounds are under investigation as one method to counteract these consequences.

The aim of this study was to assess the effect of topical application of phytocannabinoid-cannabidiol (CBD) on the skin of nude rats chronically irradiated with UVA/UVB, paying particular attention to its impact on the liver antioxidants and phospholipid metabolism.

The results of this study indicate that CBD reaches the rat liver where it is then metabolized into decarbonylated cannabidiol, 7-hydroxy-cannabidiol and cannabidiol-glucuronide. CBD increased the levels of GSH and vitamin A after UVB radiation. Moreover, CBD prevents the increase of 4-hydroxynonenal and 8-iso-prostaglandin-F levels in UVA-irradiated rats. As a consequence of reductions in phospholipase A2 and cyclooxygenases activity following UV irradiation, CBD upregulates the level of 2-arachidonoylglycerol and downregulates prostaglandin E2 and leukotriene B4. Finally, CBD enhances decreased level of 15-deoxy-Δ-12,14-prostaglandin J2 after UVB radiation and 15-hydroxyeicosatetraenoic acid after UVA radiation.

These data show that CBD applied to the skin prevents ROS- and enzyme-dependent phospholipid metabolism in the liver of UV-irradiated rats, suggesting that it may be used as an internal organ protector.”

https://pubmed.ncbi.nlm.nih.gov/34439405/

https://www.mdpi.com/2076-3921/10/8/1157

Neuroprotective and Symptomatic Effects of Cannabidiol in an Animal Model of Parkinson’s Disease

ijms-logo“Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia Nigra pars compacta, leading to classical PD motor symptoms. Current therapies are purely symptomatic and do not modify disease progression.

Cannabidiol (CBD), one of the main phytocannabinoids identified in Cannabis Sativa, which exhibits a large spectrum of therapeutic properties, including anti-inflammatory and antioxidant effects, suggesting its potential as disease-modifying agent for PD.

The aim of this study was to evaluate the effects of chronic treatment with CBD (10 mg/kg, i.p.) on PD-associated neurodegenerative and neuroinflammatory processes, and motor deficits in the 6-hydroxydopamine model. Moreover, we investigated the potential mechanisms by which CBD exerted its effects in this model.

CBD-treated animals showed a reduction of nigrostriatal degeneration accompanied by a damping of the neuroinflammatory response and an improvement of motor performance. In particular, CBD exhibits a preferential action on astrocytes and activates the astrocytic transient receptor potential vanilloid 1 (TRPV1), thus, enhancing the endogenous neuroprotective response of ciliary neurotrophic factor (CNTF).

These results overall support the potential therapeutic utility of CBD in PD, as both neuroprotective and symptomatic agent.”

https://pubmed.ncbi.nlm.nih.gov/34445626/

https://www.mdpi.com/1422-0067/22/16/8920

Cannabidiol – A phytocannabinoid that widely affects sphingolipid metabolism under conditions of brain insulin resistance

Biomedicine & Pharmacotherapy“Obesity-related insulin resistance (IR) and attenuated brain insulin signaling are significant risk factors for neurodegenerative disorders, e.g., Alzheimer’s disease. IR and type 2 diabetes correlate with an increased concentration of sphingolipids, a class of lipids that play an essential structural role in cellular membranes and cell signaling pathways.

Cannabidiol (CBD) is a nonpsychoactive constituent of Cannabis sativa plant that interacts with the endocannabinoidome. Despite known positive effects of CBD on improvement in diabetes and its aftermath, e.g., anti-inflammatory and anti-oxidant effects, there are no studies evaluating the effect of phytocannabinoids on the brain insulin resistance and sphingolipid metabolism. Our experiment was carried out on Wistar rats that received a high-fat diet and/or intraperitoneal CBD injections.

In our study, we indicated inhibition of de novo synthesis and salvage pathways, which resulted in significant changes in the concentration of sphingolipids, e.g., ceramide and sphingomyelin. Furthermore, we observed reduced brain IR and decreased tau protein phosphorylation what might be protective against neuropathologies development.

We believe that our research will concern a new possible therapeutic approach with Cannabis -plant derived compounds and within a few years, cannabinoids would be considered as prominent substances for targeting both metabolic and neurodegenerative pathologies.”

https://pubmed.ncbi.nlm.nih.gov/34435590/

“CBD might be an essential factor that leads to the reduction of brain IR. Thus, we believe that our research will concern a new possible therapeutic approach with a Cannabis-plant derived compounds and within a few years, those substances would be considered as prominent compounds for targeting both metabolic and neurodegenerative pathologies.”

https://www.sciencedirect.com/science/article/pii/S0753332221008404?via%3Dihub